Filtros : "Financiamento FAPESP" "Bortolan, Matheus Cheque" Removido: "2024" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Evolution Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, v. 25, n. 1, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-01039-5. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2025). Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, 25( 1), 1-29. doi:10.1007/s00028-024-01039-5
    • NLM

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
    • Vancouver

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
  • Fonte: Differential Equations and Dynamical Systems. Unidade: ICMC

    Assuntos: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PACÍFICO, Tiago A. Sections and parallelizable semigroups. Differential Equations and Dynamical Systems, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12591-025-00734-0. Acesso em: 08 out. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pacífico, T. A. (2025). Sections and parallelizable semigroups. Differential Equations and Dynamical Systems. doi:10.1007/s12591-025-00734-0
    • NLM

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
    • Vancouver

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
  • Fonte: Journal of Mathematical Biology. Unidade: ICMC

    Assuntos: ESTABILIDADE DE SISTEMAS, ATRATORES, MÉTODOS NUMÉRICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, v. 90, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00285-025-02190-4. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Kalita, P., Langa, J. A., & Moura, R. de O. (2025). A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, 90( 3), 1-31. doi:10.1007/s00285-025-02190-4
    • NLM

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
    • Vancouver

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Fonte: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Assuntos: ATRATORES, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, v. 48, n. 14, p. 13456-13474, 2025Tradução . . Disponível em: https://doi.org/10.1002/mma.11115. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Pecorari Neto, C., López-Lázaro, H., & Seminario-Huertas, P. N. (2025). Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, 48( 14), 13456-13474. doi:10.1002/mma.11115
    • NLM

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
    • Vancouver

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-021-10066-6

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025