Filtros : "COHOMOLOGIA" "Inglês" Removido: "Alemanha" Limpar

Filtros



Refine with date range


  • Source: Journal of Logic and Computation. Unidade: IME

    Subjects: TEORIA DAS CATEGORIAS, COHOMOLOGIA

    Disponível em 2025-01-22Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TENORIO, Ana Luiza e MENDES, Caio de Andrade e MARIANO, Hugo Luiz. On sheaves on semicartesian quantales and their truth values. Journal of Logic and Computation, 2024Tradução . . Disponível em: https://doi.org/10.1093/logcom/exad081. Acesso em: 31 out. 2024.
    • APA

      Tenorio, A. L., Mendes, C. de A., & Mariano, H. L. (2024). On sheaves on semicartesian quantales and their truth values. Journal of Logic and Computation. doi:10.1093/logcom/exad081
    • NLM

      Tenorio AL, Mendes C de A, Mariano HL. On sheaves on semicartesian quantales and their truth values [Internet]. Journal of Logic and Computation. 2024 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/logcom/exad081
    • Vancouver

      Tenorio AL, Mendes C de A, Mariano HL. On sheaves on semicartesian quantales and their truth values [Internet]. Journal of Logic and Computation. 2024 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/logcom/exad081
  • Source: Quarterly Journal of Mathematics. Unidade: ICMC

    Subjects: HOMOTOPIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IDRISSI, Najib e VIEIRA, Renato Vasconcellos. Non-formality of Voronov's swiss-cheese operads. Quarterly Journal of Mathematics, v. 75, n. 1, p. 63-95, 2024Tradução . . Disponível em: https://doi.org/10.1093/qmath/haad041. Acesso em: 31 out. 2024.
    • APA

      Idrissi, N., & Vieira, R. V. (2024). Non-formality of Voronov's swiss-cheese operads. Quarterly Journal of Mathematics, 75( 1), 63-95. doi:10.1093/qmath/haad041
    • NLM

      Idrissi N, Vieira RV. Non-formality of Voronov's swiss-cheese operads [Internet]. Quarterly Journal of Mathematics. 2024 ; 75( 1): 63-95.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haad041
    • Vancouver

      Idrissi N, Vieira RV. Non-formality of Voronov's swiss-cheese operads [Internet]. Quarterly Journal of Mathematics. 2024 ; 75( 1): 63-95.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haad041
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Strongly stratifying ideals, Morita contexts and Hochschild homology. Journal of Algebra, v. 639, p. 120-149, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2023.09.044. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2024). Strongly stratifying ideals, Morita contexts and Hochschild homology. Journal of Algebra, 639, 120-149. doi:10.1016/j.jalgebra.2023.09.044
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Strongly stratifying ideals, Morita contexts and Hochschild homology [Internet]. Journal of Algebra. 2024 ; 639 120-149.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.09.044
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Strongly stratifying ideals, Morita contexts and Hochschild homology [Internet]. Journal of Algebra. 2024 ; 639 120-149.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.09.044
  • Source: The Quarterly Journal of Mathematics. Unidade: IME

    Subjects: COHOMOLOGIA, ÁLGEBRAS DE HOPF

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Marcelo Muniz e DOKUCHAEV, Michael e KOCHLOUKOVA, Dessislava H. Homology and cohomology via the partial group algebra. The Quarterly Journal of Mathematics, v. 75, n. 2, p. 613-661, 2024Tradução . . Disponível em: https://doi.org/10.1093/qmath/haae017. Acesso em: 31 out. 2024.
    • APA

      Alves, M. M., Dokuchaev, M., & Kochloukova, D. H. (2024). Homology and cohomology via the partial group algebra. The Quarterly Journal of Mathematics, 75( 2), 613-661. doi:10.1093/qmath/haae017
    • NLM

      Alves MM, Dokuchaev M, Kochloukova DH. Homology and cohomology via the partial group algebra [Internet]. The Quarterly Journal of Mathematics. 2024 ; 75( 2): 613-661.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haae017
    • Vancouver

      Alves MM, Dokuchaev M, Kochloukova DH. Homology and cohomology via the partial group algebra [Internet]. The Quarterly Journal of Mathematics. 2024 ; 75( 2): 613-661.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haae017
  • Source: Proceedings. Conference titles: Categorical, Combinatorial and Geometric Representation Theory and Related Topics. Unidade: IME

    Subjects: COHOMOLOGIA, SUPERÁLGEBRAS DE LIE, OPERADORES DIFERENCIAIS

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOS SANTOS, Felipe Albino e FUTORNY, Vyacheslav e ZHAO, Kaiming. Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. 2024, Anais.. Providence: AMS, 2024. . Acesso em: 31 out. 2024.
    • APA

      Dos Santos, F. A., Futorny, V., & Zhao, K. (2024). Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. In Proceedings. Providence: AMS. doi:10.1090/pspum/108/01962
    • NLM

      Dos Santos FA, Futorny V, Zhao K. Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. Proceedings. 2024 ;[citado 2024 out. 31 ]
    • Vancouver

      Dos Santos FA, Futorny V, Zhao K. Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. Proceedings. 2024 ;[citado 2024 out. 31 ]
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA, SEQUÊNCIAS ESPECTRAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e USUGA, Emmanuel Jerez. (Co)homology of partial smash products. Journal of Algebra, v. 652, p. 113-157, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2024.04.017. Acesso em: 31 out. 2024.
    • APA

      Dokuchaev, M., & Usuga, E. J. (2024). (Co)homology of partial smash products. Journal of Algebra, 652, 113-157. doi:10.1016/j.jalgebra.2024.04.017
    • NLM

      Dokuchaev M, Usuga EJ. (Co)homology of partial smash products [Internet]. Journal of Algebra. 2024 ; 652 113-157.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.04.017
    • Vancouver

      Dokuchaev M, Usuga EJ. (Co)homology of partial smash products [Internet]. Journal of Algebra. 2024 ; 652 113-157.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.04.017
  • Unidade: IME

    Subjects: TEORIA DAS CATEGORIAS, COHOMOLOGIA, FEIXES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TENORIO, Ana Luiza. Sheaves on semicartesian monoidal categories and applications in the quantalic case. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/. Acesso em: 31 out. 2024.
    • APA

      Tenorio, A. L. (2023). Sheaves on semicartesian monoidal categories and applications in the quantalic case (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/
    • NLM

      Tenorio AL. Sheaves on semicartesian monoidal categories and applications in the quantalic case [Internet]. 2023 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/
    • Vancouver

      Tenorio AL. Sheaves on semicartesian monoidal categories and applications in the quantalic case [Internet]. 2023 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/
  • Source: Algebras and Representation Theory. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, v. 26, n. 6, p. 2383-2397, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10468-022-10178-7. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., & Lima, P. H. A. A. (2023). On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, 26( 6), 2383-2397. doi:10.1007/s10468-022-10178-7
    • NLM

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de et al. Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, v. 227, n. 2, p. 1-17, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2022.107188. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., Miranda-Neto, C. B., & Schenzel, P. (2023). Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, 227( 2), 1-17. doi:10.1016/j.jpaa.2022.107188
    • NLM

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
  • Unidade: ICMC

    Subjects: FOLHEAÇÕES, TEORIA DE MORSE, COHOMOLOGIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Douglas Luiz Finamore. Contact foliations: closed leaves and generalised Weinstein conjectures. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-30082023-163143/. Acesso em: 31 out. 2024.
    • APA

      Barbosa, D. L. F. (2023). Contact foliations: closed leaves and generalised Weinstein conjectures (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-30082023-163143/
    • NLM

      Barbosa DLF. Contact foliations: closed leaves and generalised Weinstein conjectures [Internet]. 2023 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-30082023-163143/
    • Vancouver

      Barbosa DLF. Contact foliations: closed leaves and generalised Weinstein conjectures [Internet]. 2023 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-30082023-163143/
  • Source: Matemática Contemporânea. Conference titles: International Meeting of Young Researchers in Singularity Theory and Related Fields. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIAS DE HOMOLOGIA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRULHA JÚNIOR, Nivaldo de Góes et al. The effect of singularization on the Euler characteristic. Matemática Contemporânea. Rio de Janeiro: SBM. Disponível em: https://doi.org/10.21711/231766362023/rmc5312. Acesso em: 31 out. 2024. , 2023
    • APA

      Grulha Júnior, N. de G., Lima, D. V. de S., Rezende, K. A. de, & Zigart, M. A. de J. (2023). The effect of singularization on the Euler characteristic. Matemática Contemporânea. Rio de Janeiro: SBM. doi:10.21711/231766362023/rmc5312
    • NLM

      Grulha Júnior N de G, Lima DV de S, Rezende KA de, Zigart MA de J. The effect of singularization on the Euler characteristic [Internet]. Matemática Contemporânea. 2023 ; 53 254-277.[citado 2024 out. 31 ] Available from: https://doi.org/10.21711/231766362023/rmc5312
    • Vancouver

      Grulha Júnior N de G, Lima DV de S, Rezende KA de, Zigart MA de J. The effect of singularization on the Euler characteristic [Internet]. Matemática Contemporânea. 2023 ; 53 254-277.[citado 2024 out. 31 ] Available from: https://doi.org/10.21711/231766362023/rmc5312
  • Unidade: ICMC

    Subjects: FIBRADOS VETORIAIS, VARIEDADES DIFERENCIÁVEIS, FORMAS DIFERENCIAIS, COHOMOLOGIA, CLASSES CARACTERÍSTICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TEZÔTO, Ivan Tagliaferro de Oliveira. Chern classes via differential forms. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/. Acesso em: 31 out. 2024.
    • APA

      Tezôto, I. T. de O. (2022). Chern classes via differential forms (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/
    • NLM

      Tezôto IT de O. Chern classes via differential forms [Internet]. 2022 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/
    • Vancouver

      Tezôto IT de O. Chern classes via differential forms [Internet]. 2022 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102022-150811/
  • Unidade: IME

    Subjects: COHOMOLOGIA, HOMOTOPIA, TOPOLOGIA ALGÉBRICA, FUNDAMENTOS DA MATEMÁTICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRE, Thiago. On the homotopy types. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/. Acesso em: 31 out. 2024.
    • APA

      Alexandre, T. (2022). On the homotopy types (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
    • NLM

      Alexandre T. On the homotopy types [Internet]. 2022 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
    • Vancouver

      Alexandre T. On the homotopy types [Internet]. 2022 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, v. 53, n. 6, p. 1636-1650, 2021Tradução . . Disponível em: https://doi.org/10.1112/blms.12516. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2021). Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, 53( 6), 1636-1650. doi:10.1112/blms.12516
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12516
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12516
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de e SANTOS, Edivaldo Lopes dos e SILVA, Nelson Antonio. On the length of cohomology spheres. Topology and its Applications, v. 293, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107569. Acesso em: 31 out. 2024.
    • APA

      Mattos, D. de, Santos, E. L. dos, & Silva, N. A. (2021). On the length of cohomology spheres. Topology and its Applications, 293, 1-11. doi:10.1016/j.topol.2020.107569
    • NLM

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
    • Vancouver

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
  • Unidade: ICMC

    Subjects: GEOMETRIA ALGÉBRICA, COHOMOLOGIA, FEIXES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVAREZ, Daniel Alberto Aguilar. Cohomology of quasi-coherent sheaves over projective schemes. 2021. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/. Acesso em: 31 out. 2024.
    • APA

      Alvarez, D. A. A. (2021). Cohomology of quasi-coherent sheaves over projective schemes (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/
    • NLM

      Alvarez DAA. Cohomology of quasi-coherent sheaves over projective schemes [Internet]. 2021 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/
    • Vancouver

      Alvarez DAA. Cohomology of quasi-coherent sheaves over projective schemes [Internet]. 2021 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082021-113531/
  • Source: Mathematica Scandinavica. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. Asymptotic behavior of j-multiplicities. Mathematica Scandinavica, v. 127, n. 2, p. 209-222, 2021Tradução . . Disponível em: https://doi.org/10.7146/math.scand.a-126029. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., & Lima, P. H. A. A. (2021). Asymptotic behavior of j-multiplicities. Mathematica Scandinavica, 127( 2), 209-222. doi:10.7146/math.scand.a-126029
    • NLM

      Freitas TH de, Jorge Pérez VH, Lima PHAA. Asymptotic behavior of j-multiplicities [Internet]. Mathematica Scandinavica. 2021 ; 127( 2): 209-222.[citado 2024 out. 31 ] Available from: https://doi.org/10.7146/math.scand.a-126029
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Lima PHAA. Asymptotic behavior of j-multiplicities [Internet]. Mathematica Scandinavica. 2021 ; 127( 2): 209-222.[citado 2024 out. 31 ] Available from: https://doi.org/10.7146/math.scand.a-126029
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, COHOMOLOGIA, ÁLGEBRAS DE JORDAN, CATEGORIAS ABELIANAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e MATHIEU, Olivier. On the free Jordan algebras. Advances in Mathematics, v. 383, p. 1-35, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2021.107690. Acesso em: 31 out. 2024.
    • APA

      Kashuba, I., & Mathieu, O. (2021). On the free Jordan algebras. Advances in Mathematics, 383, 1-35. doi:10.1016/j.aim.2021.107690
    • NLM

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2021.107690
    • Vancouver

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2021.107690
  • Source: Bulletin of the Belgian Mathematical Society - Simon Stevin. Unidade: ICMC

    Subjects: COHOMOLOGIA, ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo. On shifted principles of generalized local cohomology modules. Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 27, n. 2, p. 203-218, 2020Tradução . . Disponível em: https://doi.org/10.36045/bbms/1594346415. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, & Jorge Pérez, V. H. (2020). On shifted principles of generalized local cohomology modules. Bulletin of the Belgian Mathematical Society - Simon Stevin, 27( 2), 203-218. doi:10.36045/bbms/1594346415
    • NLM

      Freitas TH de, Jorge Pérez VH. On shifted principles of generalized local cohomology modules [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2020 ; 27( 2): 203-218.[citado 2024 out. 31 ] Available from: https://doi.org/10.36045/bbms/1594346415
    • Vancouver

      Freitas TH de, Jorge Pérez VH. On shifted principles of generalized local cohomology modules [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2020 ; 27( 2): 203-218.[citado 2024 out. 31 ] Available from: https://doi.org/10.36045/bbms/1594346415
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA, TEORIA DAS CATEGORIAS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, v. 307, n. 1, p. 63-77, 2020Tradução . . Disponível em: https://doi.org/10.2140/pjm.2020.307.63. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.2140/pjm.2020.307.63

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024