Filtros : "Indexado no Science Citation Index" "Ucrânia" Removido: "Mendonça, Cleber Renato" Limpar

Filtros



Refine with date range


  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, ESPAÇOS MÉTRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões e MENEGATTO, Valdir Antônio. A Gneiting-like method for constructing positive definite functions on metric spaces. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 16, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2020.117. Acesso em: 05 nov. 2024.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2020). A Gneiting-like method for constructing positive definite functions on metric spaces. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 16, 1-15. doi:10.3842/SIGMA.2020.117
    • NLM

      Barbosa VS, Menegatto VA. A Gneiting-like method for constructing positive definite functions on metric spaces [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2020 ; 16 1-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2020.117
    • Vancouver

      Barbosa VS, Menegatto VA. A Gneiting-like method for constructing positive definite functions on metric spaces [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2020 ; 16 1-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2020.117
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, FUNÇÕES HIPERGEOMÉTRICAS, FUNÇÕES ORTOGONAIS, SÉRIES ORTOGONAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSIRI, Pier Giovanni e MENEGATTO, Valdir Antônio e PORCU, Emilio. Relations between Schoenberg coefficients on real and complex spheres of different dimensions. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 15, p. 1-12, 2019Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2019.004. Acesso em: 05 nov. 2024.
    • APA

      Bissiri, P. G., Menegatto, V. A., & Porcu, E. (2019). Relations between Schoenberg coefficients on real and complex spheres of different dimensions. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 15, 1-12. doi:10.3842/SIGMA.2019.004
    • NLM

      Bissiri PG, Menegatto VA, Porcu E. Relations between Schoenberg coefficients on real and complex spheres of different dimensions [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2019 ; 15 1-12.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2019.004
    • Vancouver

      Bissiri PG, Menegatto VA, Porcu E. Relations between Schoenberg coefficients on real and complex spheres of different dimensions [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2019 ; 15 1-12.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2019.004
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONFIM, Rafaela N e GUELLA, Jean Carlo e MENEGATTO, Valdir Antônio. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 14, p. 1-14, 2018Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2018.112. Acesso em: 05 nov. 2024.
    • APA

      Bonfim, R. N., Guella, J. C., & Menegatto, V. A. (2018). Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 14, 1-14. doi:10.3842/SIGMA.2018.112
    • NLM

      Bonfim RN, Guella JC, Menegatto VA. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2018 ;14 1-14.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2018.112
    • Vancouver

      Bonfim RN, Guella JC, Menegatto VA. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2018 ;14 1-14.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2018.112
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, FUNÇÕES ORTOGONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSA, Eugenio Tommaso e PERON, Ana Paula e PORCU, Emilio. Positive definite functions on complex spheres and their walks through dimensions. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 13, p. 1-16, 2017Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2017.088. Acesso em: 05 nov. 2024.
    • APA

      Massa, E. T., Peron, A. P., & Porcu, E. (2017). Positive definite functions on complex spheres and their walks through dimensions. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 13, 1-16. doi:10.3842/SIGMA.2017.088
    • NLM

      Massa ET, Peron AP, Porcu E. Positive definite functions on complex spheres and their walks through dimensions [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2017 ; 13 1-16.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2017.088
    • Vancouver

      Massa ET, Peron AP, Porcu E. Positive definite functions on complex spheres and their walks through dimensions [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2017 ; 13 1-16.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2017.088
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 12, n. 103, p. 1-15, 2016Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2016.103. Acesso em: 05 nov. 2024.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 12( 103), 1-15. doi:10.3842/SIGMA.2016.103
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor S e MENEGATTO, Valdir Antônio. Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 11, p. 1-13, 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.014. Acesso em: 05 nov. 2024.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2015). Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 11, 1-13. doi:10.3842/SIGMA.2015.014
    • NLM

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
    • Vancouver

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
  • Source: Symmetry, Integrability and Geometry : Methods and Applications. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch et al. Post-Lie algebras and isospectral flows. Symmetry, Integrability and Geometry : Methods and Applications, v. 11, p. 1-16, 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.093. Acesso em: 05 nov. 2024.
    • APA

      Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., & Munthe-Kaas, H. Z. (2015). Post-Lie algebras and isospectral flows. Symmetry, Integrability and Geometry : Methods and Applications, 11, 1-16. doi:10.3842/SIGMA.2015.093
    • NLM

      Ebrahimi-Fard K, Lundervold A, Mencattini I, Munthe-Kaas HZ. Post-Lie algebras and isospectral flows [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2015 ; 11 1-16.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2015.093
    • Vancouver

      Ebrahimi-Fard K, Lundervold A, Mencattini I, Munthe-Kaas HZ. Post-Lie algebras and isospectral flows [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2015 ; 11 1-16.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2015.093
  • Source: Symmetry, Integrability and Geometry : Methods and Applications. Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e TACCHELLA, Alberto. A note on the automorphism group of the Bielawski-Pidstrygach quiver. Symmetry, Integrability and Geometry : Methods and Applications, v. 9, p. 1-13, 2013Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2013.037. Acesso em: 05 nov. 2024.
    • APA

      Mencattini, I., & Tacchella, A. (2013). A note on the automorphism group of the Bielawski-Pidstrygach quiver. Symmetry, Integrability and Geometry : Methods and Applications, 9, 1-13. doi:10.3842/SIGMA.2013.037
    • NLM

      Mencattini I, Tacchella A. A note on the automorphism group of the Bielawski-Pidstrygach quiver [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2013 ; 9 1-13.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2013.037
    • Vancouver

      Mencattini I, Tacchella A. A note on the automorphism group of the Bielawski-Pidstrygach quiver [Internet]. Symmetry, Integrability and Geometry : Methods and Applications. 2013 ; 9 1-13.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3842/SIGMA.2013.037

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024