A Gneiting-like method for constructing positive definite functions on metric spaces (2020)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.3842/SIGMA.2020.117
- Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS; ESPAÇOS MÉTRICOS
- Keywords: positive definite functions; generalized Stieltjes functions; Bernstein functions; Gneiting's model; products of metric spaces
- Language: Inglês
- Imprenta:
- Source:
- Título: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA
- ISSN: 1815-0659
- Volume/Número/Paginação/Ano: v. 16, p. 1-15, 2020
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BARBOSA, Victor Simões e MENEGATTO, Valdir Antônio. A Gneiting-like method for constructing positive definite functions on metric spaces. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 16, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2020.117. Acesso em: 26 jan. 2026. -
APA
Barbosa, V. S., & Menegatto, V. A. (2020). A Gneiting-like method for constructing positive definite functions on metric spaces. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 16, 1-15. doi:10.3842/SIGMA.2020.117 -
NLM
Barbosa VS, Menegatto VA. A Gneiting-like method for constructing positive definite functions on metric spaces [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2020 ; 16 1-15.[citado 2026 jan. 26 ] Available from: https://doi.org/10.3842/SIGMA.2020.117 -
Vancouver
Barbosa VS, Menegatto VA. A Gneiting-like method for constructing positive definite functions on metric spaces [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2020 ; 16 1-15.[citado 2026 jan. 26 ] Available from: https://doi.org/10.3842/SIGMA.2020.117 - Generalized interpolation on spheres using positive definite and related functions
- A complex approach to strict positive definiteness on spheres
- Strict positive definiteness on spheres via disk polynomilas
- Conditionally positive definite dot procuct kernels
- From Schoenberg coefficients to Schoenberg functions: strict positive definiteness
- Positive definite kernels on complex spheres
- Approximation by spherical convolution
- Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces
- Approximation on the sphere by weighted Fourier expansions
- Strictly positive definite kernels on the circle
Informações sobre o DOI: 10.3842/SIGMA.2020.117 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3012749.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
