Filtros : "Neural Computing and Applications" Removido: "Financiamento FAPESP" Limpar

Filtros



Limitar por data


  • Fonte: Neural Computing and Applications. Nome do evento: LatinX in AI at NeurIPS. Unidade: IME

    Assunto: MATEMÁTICA APLICADA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POLO, Felipe Maia e VICENTE, Renato. Effective sample size, dimensionality, and generalization in covariate shift adaptation. Neural Computing and Applications. Godalming: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s00521-021-06615-1. Acesso em: 16 jun. 2025. , 2023
    • APA

      Polo, F. M., & Vicente, R. (2023). Effective sample size, dimensionality, and generalization in covariate shift adaptation. Neural Computing and Applications. Godalming: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s00521-021-06615-1
    • NLM

      Polo FM, Vicente R. Effective sample size, dimensionality, and generalization in covariate shift adaptation [Internet]. Neural Computing and Applications. 2023 ; 35( 25): 18187-18199.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-021-06615-1
    • Vancouver

      Polo FM, Vicente R. Effective sample size, dimensionality, and generalization in covariate shift adaptation [Internet]. Neural Computing and Applications. 2023 ; 35( 25): 18187-18199.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-021-06615-1
  • Fonte: Neural Computing and Applications. Unidade: ICMC

    Assuntos: APRENDIZADO COMPUTACIONAL, ELETROENCEFALOGRAFIA, EPILEPSIA, DIAGNÓSTICO POR COMPUTADOR, TECNOLOGIAS DA SAÚDE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARGAS, Dionathan Luan de et al. Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis. Neural Computing and Applications, v. 35, n. 16, p. 12195-12219, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00521-023-08350-1. Acesso em: 16 jun. 2025.
    • APA

      Vargas, D. L. de, Oliva, J. T., Teixeira, M., Casanova, D., & Rosa, J. L. G. (2023). Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis. Neural Computing and Applications, 35( 16), 12195-12219. doi:10.1007/s00521-023-08350-1
    • NLM

      Vargas DL de, Oliva JT, Teixeira M, Casanova D, Rosa JLG. Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis [Internet]. Neural Computing and Applications. 2023 ; 35( 16): 12195-12219.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-023-08350-1
    • Vancouver

      Vargas DL de, Oliva JT, Teixeira M, Casanova D, Rosa JLG. Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis [Internet]. Neural Computing and Applications. 2023 ; 35( 16): 12195-12219.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-023-08350-1
  • Fonte: Neural Computing and Applications. Unidade: FEA

    Assuntos: APRENDIZADO COMPUTACIONAL, LÓGICA FUZZY, MOEDA (ECONOMIA)

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACIEL, Leandro dos Santos e BALLINI, Rosangela e GOMIDE, Fernando. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, v. 1, p. 1, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00521-021-06263-5. Acesso em: 16 jun. 2025.
    • APA

      Maciel, L. dos S., Ballini, R., & Gomide, F. (2021). Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, 1, 1. doi:10.1007/s00521-021-06263-5
    • NLM

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
    • Vancouver

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
  • Fonte: Neural Computing and Applications. Unidade: EP

    Assunto: SISTEMAS EMBUTIDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUSA, Miguel Angelo de Abreu de e DEL MORAL HERNANDEZ, Emilio e PIRES, Ricardo. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects. Neural Computing and Applications, v. 30, n. 12, p. 3759-3771, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00521-017-2957-0. Acesso em: 16 jun. 2025.
    • APA

      Sousa, M. A. de A. de, Del Moral Hernandez, E., & Pires, R. (2018). OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects. Neural Computing and Applications, 30( 12), 3759-3771. doi:10.1007/s00521-017-2957-0
    • NLM

      Sousa MA de A de, Del Moral Hernandez E, Pires R. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects [Internet]. Neural Computing and Applications. 2018 ; 30( 12): 3759-3771.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-017-2957-0
    • Vancouver

      Sousa MA de A de, Del Moral Hernandez E, Pires R. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects [Internet]. Neural Computing and Applications. 2018 ; 30( 12): 3759-3771.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-017-2957-0
  • Fonte: Neural Computing and Applications. Unidade: EACH

    Assuntos: EPILEPSIA, ELETROENCEFALOGRAFIA, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Luís Augusto Martins et al. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, n. ju 2017, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00521-017-3124-3. Acesso em: 16 jun. 2025.
    • APA

      Pereira, L. A. M., Papa, J. P., Coelho, A. L. V., Lima, C. A. de M., Pereira, D. R., & Albuquerque, V. H. C. de. (2017). Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, ( ju 2017), 1-13. doi:10.1007/s00521-017-3124-3
    • NLM

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
    • Vancouver

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
  • Fonte: Neural Computing and Applications. Unidade: EACH

    Assuntos: RECONHECIMENTO DE PADRÕES, INTELIGÊNCIA ARTIFICIAL, ANÁLISE DO MOVIMENTO HUMANO, ELETROMIOGRAFIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Clodoaldo Aparecido de Moraes et al. Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Computing and Applications, v. 27, n. 3, p. 791-804, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1953-5. Acesso em: 16 jun. 2025.
    • APA

      Lima, C. A. de M., Coelho, A. L. V., Madeo, R. C. B., & Peres, S. M. (2016). Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Computing and Applications, 27( 3), 791-804. doi:10.1007/s00521-015-1953-5
    • NLM

      Lima CA de M, Coelho ALV, Madeo RCB, Peres SM. Classification of electromyography signals using relevance vector machines and fractal dimension [Internet]. Neural Computing and Applications. 2016 ; 27( 3): 791-804.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1953-5
    • Vancouver

      Lima CA de M, Coelho ALV, Madeo RCB, Peres SM. Classification of electromyography signals using relevance vector machines and fractal dimension [Internet]. Neural Computing and Applications. 2016 ; 27( 3): 791-804.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1953-5
  • Fonte: Neural Computing and Applications. Unidade: ICMC

    Assuntos: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE, INFERÊNCIA BAYESIANA, ESTATÍSTICA APLICADA, ALGORITMOS GENÉTICOS, MODELOS EM SÉRIES TEMPORAIS, ELASTICIDADE, COMPUTAÇÃO EM NUVEM

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MESSIAS, Valter Rogério et al. Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure. Neural Computing and Applications, v. No 2016, n. 8, p. 2383-2406, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-2133-3. Acesso em: 16 jun. 2025.
    • APA

      Messias, V. R., Estrella, J. C., Ehlers, R. S., Santana, M. J., Santana, R. H. C., & Reiff-Marganiec, S. (2016). Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure. Neural Computing and Applications, No 2016( 8), 2383-2406. doi:10.1007/s00521-015-2133-3
    • NLM

      Messias VR, Estrella JC, Ehlers RS, Santana MJ, Santana RHC, Reiff-Marganiec S. Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure [Internet]. Neural Computing and Applications. 2016 ; No 2016( 8): 2383-2406.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-2133-3
    • Vancouver

      Messias VR, Estrella JC, Ehlers RS, Santana MJ, Santana RHC, Reiff-Marganiec S. Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure [Internet]. Neural Computing and Applications. 2016 ; No 2016( 8): 2383-2406.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-2133-3
  • Fonte: Neural Computing and Applications. Unidades: EESC, ICMC

    Assuntos: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURQUIM, Gustavo et al. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, v. 27, p. 1129-1141, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1930-z. Acesso em: 16 jun. 2025.
    • APA

      Furquim, G., Pessin, G., Faiçal, B. S., Mendiondo, E. M., & Ueyama, J. (2016). Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, 27, 1129-1141. doi:10.1007/s00521-015-1930-z
    • NLM

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1930-z
    • Vancouver

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1930-z

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025