Filtros : "Rússia" "IME" Removidos: " GRU999" "Paula, Gilberto Alvarenga" "LEONARDI, FLORENCIA GRACIELA" "1979" "Marcel Dekker" Limpar

Filtros



Limitar por data


  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assuntos: PROCESSOS DE NASCIMENTO E MORTE, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, PROCESSOS DE DIFUSÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, v. 29, n. 4, p. 605-618, 2024Tradução . . Disponível em: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007. Acesso em: 15 nov. 2024.
    • APA

      Logachov, A., Logachova, O., Pechersky, E., Presman, E., & Iambartsev, A. (2024). Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, 29( 4), 605-618. doi:10.61102/1024-2953-mprf.2023.29.4.007
    • NLM

      Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2024 nov. 15 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007
    • Vancouver

      Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2024 nov. 15 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007
  • Fonte: Doklady Physics. Unidade: IME

    Assuntos: EQUAÇÕES DE YANG-MILLS, TEORIA DE GAUGE

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir e GRICHKOV, Alexandre. A gauge-invariant lagrangian determined by the n-point probability density function of a vorticity field of wave optical turbulence. Doklady Physics, v. 68, p. 416-421, 2024Tradução . . Disponível em: https://doi.org/10.1134/S1028335823120042. Acesso em: 15 nov. 2024.
    • APA

      Grebenev, V., & Grichkov, A. (2024). A gauge-invariant lagrangian determined by the n-point probability density function of a vorticity field of wave optical turbulence. Doklady Physics, 68, 416-421. doi:10.1134/S1028335823120042
    • NLM

      Grebenev V, Grichkov A. A gauge-invariant lagrangian determined by the n-point probability density function of a vorticity field of wave optical turbulence [Internet]. Doklady Physics. 2024 ; 68 416-421.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S1028335823120042
    • Vancouver

      Grebenev V, Grichkov A. A gauge-invariant lagrangian determined by the n-point probability density function of a vorticity field of wave optical turbulence [Internet]. Doklady Physics. 2024 ; 68 416-421.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S1028335823120042
  • Fonte: Regular and Chaotic Dynamics. Unidade: IME

    Assuntos: VÓRTICES DOS FLUÍDOS, SUPERFÍCIES DE RIEMANN

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e GUSTAFSSON, Björn e KOILLER, Jair. On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d. Regular and Chaotic Dynamics, v. 29, p. 241-303, 2024Tradução . . Disponível em: https://doi.org/10.1134/S1560354724020011. Acesso em: 15 nov. 2024.
    • APA

      Ragazzo, C. G., Gustafsson, B., & Koiller, J. (2024). On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d. Regular and Chaotic Dynamics, 29, 241-303. doi:10.1134/S1560354724020011
    • NLM

      Ragazzo CG, Gustafsson B, Koiller J. On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d [Internet]. Regular and Chaotic Dynamics. 2024 ; 29 241-303.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S1560354724020011
    • Vancouver

      Ragazzo CG, Gustafsson B, Koiller J. On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d [Internet]. Regular and Chaotic Dynamics. 2024 ; 29 241-303.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S1560354724020011
  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene e PRESMAN, Ernst L'vovich e IAMBARTSEV, Anatoli. Sojourn times of Markov symmetric processes in continuous time. Markov Processes And Related Fields, v. 29, n. 2, p. 199-224, 2023Tradução . . Disponível em: https://math-mprf.org/journal/articles/id1666/. Acesso em: 15 nov. 2024.
    • APA

      Pechersky, E., Presman, E. L. 'vovich, & Iambartsev, A. (2023). Sojourn times of Markov symmetric processes in continuous time. Markov Processes And Related Fields, 29( 2), 199-224. Recuperado de https://math-mprf.org/journal/articles/id1666/
    • NLM

      Pechersky E, Presman EL'vovich, Iambartsev A. Sojourn times of Markov symmetric processes in continuous time [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 199-224.[citado 2024 nov. 15 ] Available from: https://math-mprf.org/journal/articles/id1666/
    • Vancouver

      Pechersky E, Presman EL'vovich, Iambartsev A. Sojourn times of Markov symmetric processes in continuous time [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 199-224.[citado 2024 nov. 15 ] Available from: https://math-mprf.org/journal/articles/id1666/
  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. V. et al. Excursions of Markov processes: a large deviation approach. Markov Processes And Related Fields, v. 29, n. 2, p. 189-197, 2023Tradução . . Disponível em: https://math-mprf.org/journal/articles/id1665/. Acesso em: 15 nov. 2024.
    • APA

      Logachov, A. V., Mogulsky, A. A., Suhov, Y. M., & Iambartsev, A. (2023). Excursions of Markov processes: a large deviation approach. Markov Processes And Related Fields, 29( 2), 189-197. Recuperado de https://math-mprf.org/journal/articles/id1665/
    • NLM

      Logachov AV, Mogulsky AA, Suhov YM, Iambartsev A. Excursions of Markov processes: a large deviation approach [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 189-197.[citado 2024 nov. 15 ] Available from: https://math-mprf.org/journal/articles/id1665/
    • Vancouver

      Logachov AV, Mogulsky AA, Suhov YM, Iambartsev A. Excursions of Markov processes: a large deviation approach [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 189-197.[citado 2024 nov. 15 ] Available from: https://math-mprf.org/journal/articles/id1665/
  • Fonte: Doklady Physics. Unidade: IME

    Assuntos: TURBULÊNCIA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir e GRICHKOV, Alexandre e OBERLACK, Martin. Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field. Doklady Physics, v. 68, n. 3, p. 92-96, 2023Tradução . . Disponível em: https://doi.org/10.1134/S1028335823010044. Acesso em: 15 nov. 2024.
    • APA

      Grebenev, V., Grichkov, A., & Oberlack, M. (2023). Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field. Doklady Physics, 68( 3), 92-96. doi:10.1134/S1028335823010044
    • NLM

      Grebenev V, Grichkov A, Oberlack M. Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field [Internet]. Doklady Physics. 2023 ; 68( 3): 92-96.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S1028335823010044
    • Vancouver

      Grebenev V, Grichkov A, Oberlack M. Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field [Internet]. Doklady Physics. 2023 ; 68( 3): 92-96.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S1028335823010044
  • Fonte: Theoretical and Mathematical Physics. Unidade: IME

    Assuntos: MECÂNICA QUÂNTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir e GRICHKOV, Alexandre e MEDVEDEV, S. B. Symmetry transformations of the vortex field statistics in optical turbulence. Theoretical and Mathematical Physics, v. 217, n. 2, p. 1795-1805, 2023Tradução . . Disponível em: https://doi.org/10.1134/S0040577923110144. Acesso em: 15 nov. 2024.
    • APA

      Grebenev, V., Grichkov, A., & Medvedev, S. B. (2023). Symmetry transformations of the vortex field statistics in optical turbulence. Theoretical and Mathematical Physics, 217( 2), 1795-1805. doi:10.1134/S0040577923110144
    • NLM

      Grebenev V, Grichkov A, Medvedev SB. Symmetry transformations of the vortex field statistics in optical turbulence [Internet]. Theoretical and Mathematical Physics. 2023 ; 217( 2): 1795-1805.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S0040577923110144
    • Vancouver

      Grebenev V, Grichkov A, Medvedev SB. Symmetry transformations of the vortex field statistics in optical turbulence [Internet]. Theoretical and Mathematical Physics. 2023 ; 217( 2): 1795-1805.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S0040577923110144
  • Fonte: Algebra Logika. Unidade: IME

    Assunto: ÁLGEBRA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P. e SHESTAKOV, Ivan P. Simple right-symmetric (1,1)-superalgebras. Algebra Logika, v. 60, n. 2, p. 166-175, 2021Tradução . . Disponível em: https://doi.org/10.33048/alglog.2021.60.204. Acesso em: 15 nov. 2024.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). Simple right-symmetric (1,1)-superalgebras. Algebra Logika, 60( 2), 166-175. doi:10.33048/alglog.2021.60.204
    • NLM

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1,1)-superalgebras [Internet]. Algebra Logika. 2021 ; 60( 2): 166-175.[citado 2024 nov. 15 ] Available from: https://doi.org/10.33048/alglog.2021.60.204
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1,1)-superalgebras [Internet]. Algebra Logika. 2021 ; 60( 2): 166-175.[citado 2024 nov. 15 ] Available from: https://doi.org/10.33048/alglog.2021.60.204
  • Fonte: Siberian Electronic Mathematical Reports. Unidade: IME

    Assuntos: GRANDES DESVIOS, ESTATÍSTICAS VITAIS (BIOESTATÍSTICA)

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem Vasilhevic et al. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, v. 17, p. 1258-1269, 2020Tradução . . Disponível em: https://doi.org/10.33048/semi.2020.17.092. Acesso em: 15 nov. 2024.
    • APA

      Logachov, A. V., Suhov, Y. M., Vvedenskaya, N. D., & Iambartsev, A. (2020). A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, 17, 1258-1269. doi:10.33048/semi.2020.17.092
    • NLM

      Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2024 nov. 15 ] Available from: https://doi.org/10.33048/semi.2020.17.092
    • Vancouver

      Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2024 nov. 15 ] Available from: https://doi.org/10.33048/semi.2020.17.092
  • Fonte: Chebyshevskii Sbornik. Unidade: IME

    Assuntos: TOPOLOGIA ALGÉBRICA, GEOMETRIA DIFERENCIAL

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e WONG, Peter e XUEZHI , Zhao. Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, v. 21, n. 2, p. 94-108, 2020Tradução . . Disponível em: https://doi.org/10.22405/2226-8383-2020-21-2-94-108. Acesso em: 15 nov. 2024.
    • APA

      Gonçalves, D. L., Wong, P., & Xuezhi , Z. (2020). Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, 21( 2), 94-108. doi:10.22405/2226-8383-2020-21-2-94-108
    • NLM

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.[citado 2024 nov. 15 ] Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
    • Vancouver

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.[citado 2024 nov. 15 ] Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. V et al. Local limits for string of frozen characters. Markov Processes And Related Fields, v. 26, n. 5, p. 885-900, 2020Tradução . . Disponível em: http://math-mprf.org/journal/articles/id1599/. Acesso em: 15 nov. 2024.
    • APA

      Logachov, A. V., Mogulsky, A. A., Prokopenko, E. I., & Iambartsev, A. (2020). Local limits for string of frozen characters. Markov Processes And Related Fields, 26( 5), 885-900. Recuperado de http://math-mprf.org/journal/articles/id1599/
    • NLM

      Logachov AV, Mogulsky AA, Prokopenko EI, Iambartsev A. Local limits for string of frozen characters [Internet]. Markov Processes And Related Fields. 2020 ; 26( 5): 885-900.[citado 2024 nov. 15 ] Available from: http://math-mprf.org/journal/articles/id1599/
    • Vancouver

      Logachov AV, Mogulsky AA, Prokopenko EI, Iambartsev A. Local limits for string of frozen characters [Internet]. Markov Processes And Related Fields. 2020 ; 26( 5): 885-900.[citado 2024 nov. 15 ] Available from: http://math-mprf.org/journal/articles/id1599/
  • Fonte: Moscow Mathematical Journal. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene et al. Large emission regime in mean field luminescence. Moscow Mathematical Journal, v. 19, n. 1, p. 107-120, 2019Tradução . . Disponível em: https://doi.org/10.17323/1609-4514-2019-19-1-107-120. Acesso em: 15 nov. 2024.
    • APA

      Pechersky, E., Pirogov, S., Schultz, G. M., Vladimirov, A., & Iambartsev, A. (2019). Large emission regime in mean field luminescence. Moscow Mathematical Journal, 19( 1), 107-120. doi:10.17323/1609-4514-2019-19-1-107-120
    • NLM

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 15 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
    • Vancouver

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 15 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
  • Fonte: Problems of Information Transmission. Unidade: IME

    Assuntos: ESTATÍSTICA APLICADA, BIOESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VVEDENSKAYA, N. D. et al. A Local large deviation principle for inhomogeneous birth–death processes. Problems of Information Transmission, v. 54, n. 3, p. 263-280, 2018Tradução . . Disponível em: https://doi.org/10.1134/s0032946018030067. Acesso em: 15 nov. 2024.
    • APA

      Vvedenskaya, N. D., Logachov, A. V., Suhov, Y. M., & Iambartsev, A. (2018). A Local large deviation principle for inhomogeneous birth–death processes. Problems of Information Transmission, 54( 3), 263-280. doi:10.1134/s0032946018030067
    • NLM

      Vvedenskaya ND, Logachov AV, Suhov YM, Iambartsev A. A Local large deviation principle for inhomogeneous birth–death processes [Internet]. Problems of Information Transmission. 2018 ; 54( 3): 263-280.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/s0032946018030067
    • Vancouver

      Vvedenskaya ND, Logachov AV, Suhov YM, Iambartsev A. A Local large deviation principle for inhomogeneous birth–death processes [Internet]. Problems of Information Transmission. 2018 ; 54( 3): 263-280.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/s0032946018030067
  • Fonte: Siberian Electronic Mathematical Reports. Unidade: IME

    Assuntos: GRUPOS FINITOS ABSTRATOS, GRUPOS SIMÉTRICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORSHKOV, I. B e GRICHKOV, Alexandre. On recognition by spectrum of symmetric groups. Siberian Electronic Mathematical Reports, v. 13, p. 111-121, 2016Tradução . . Disponível em: https://doi.org/10.17377/semi.2016.13.009. Acesso em: 15 nov. 2024.
    • APA

      Gorshkov, I. B., & Grichkov, A. (2016). On recognition by spectrum of symmetric groups. Siberian Electronic Mathematical Reports, 13, 111-121. doi:10.17377/semi.2016.13.009
    • NLM

      Gorshkov IB, Grichkov A. On recognition by spectrum of symmetric groups [Internet]. Siberian Electronic Mathematical Reports. 2016 ; 13 111-121.[citado 2024 nov. 15 ] Available from: https://doi.org/10.17377/semi.2016.13.009
    • Vancouver

      Gorshkov IB, Grichkov A. On recognition by spectrum of symmetric groups [Internet]. Siberian Electronic Mathematical Reports. 2016 ; 13 111-121.[citado 2024 nov. 15 ] Available from: https://doi.org/10.17377/semi.2016.13.009
  • Fonte: Information Processes. Unidades: IGC, IME

    Assuntos: PROCESSOS DE MARKOV, PROCESSOS ESTOCÁSTICOS, TECTÔNICA DE PLACAS

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene A et al. Dynamics of tectonic plates. Information Processes, v. 15, n. 1, p. 51-65, 2015Tradução . . Disponível em: http://www.jip.ru/2015/51-65-2015.pdf. Acesso em: 15 nov. 2024.
    • APA

      Pechersky, E. A., Pirogov, S., Sadowski, G. R., & Yambartsev, A. (2015). Dynamics of tectonic plates. Information Processes, 15( 1), 51-65. Recuperado de http://www.jip.ru/2015/51-65-2015.pdf
    • NLM

      Pechersky EA, Pirogov S, Sadowski GR, Yambartsev A. Dynamics of tectonic plates [Internet]. Information Processes. 2015 ; 15( 1): 51-65.[citado 2024 nov. 15 ] Available from: http://www.jip.ru/2015/51-65-2015.pdf
    • Vancouver

      Pechersky EA, Pirogov S, Sadowski GR, Yambartsev A. Dynamics of tectonic plates [Internet]. Information Processes. 2015 ; 15( 1): 51-65.[citado 2024 nov. 15 ] Available from: http://www.jip.ru/2015/51-65-2015.pdf
  • Fonte: Markov Processes and Related Fields. Unidade: IME

    Assuntos: PASSEIOS ALEATÓRIOS, TEOREMAS LIMITES, PROCESSOS ESTOCÁSTICOS

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HART, A e MACHADO, Fábio Prates e MATZINGER, Heinrich. Information recovery from observations by a random walk having jump distribution with exponential tails. Markov Processes and Related Fields, v. 21, n. 4, p. 939-970, 2015Tradução . . Acesso em: 15 nov. 2024.
    • APA

      Hart, A., Machado, F. P., & Matzinger, H. (2015). Information recovery from observations by a random walk having jump distribution with exponential tails. Markov Processes and Related Fields, 21( 4), 939-970.
    • NLM

      Hart A, Machado FP, Matzinger H. Information recovery from observations by a random walk having jump distribution with exponential tails. Markov Processes and Related Fields. 2015 ; 21( 4): 939-970.[citado 2024 nov. 15 ]
    • Vancouver

      Hart A, Machado FP, Matzinger H. Information recovery from observations by a random walk having jump distribution with exponential tails. Markov Processes and Related Fields. 2015 ; 21( 4): 939-970.[citado 2024 nov. 15 ]
  • Fonte: Markov Processes and Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e PEIXOTO, Gabriel Ribeiro da Cruz. Elementary results on K processes with weights. Markov Processes and Related Fields, v. 19, n. 2, p. 343-370, 2013Tradução . . Acesso em: 15 nov. 2024.
    • APA

      Fontes, L. R., & Peixoto, G. R. da C. (2013). Elementary results on K processes with weights. Markov Processes and Related Fields, 19( 2), 343-370.
    • NLM

      Fontes LR, Peixoto GR da C. Elementary results on K processes with weights. Markov Processes and Related Fields. 2013 ; 19( 2): 343-370.[citado 2024 nov. 15 ]
    • Vancouver

      Fontes LR, Peixoto GR da C. Elementary results on K processes with weights. Markov Processes and Related Fields. 2013 ; 19( 2): 343-370.[citado 2024 nov. 15 ]
  • Fonte: Siberian Mathematical Journal. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, Alexander P e SHESTAKOV, Ivan P. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0. Siberian Mathematical Journal, v. 54, n. 2, p. 301-316, 2013Tradução . . Disponível em: https://doi.org/10.1134/S0037446613020134. Acesso em: 15 nov. 2024.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2013). Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0. Siberian Mathematical Journal, 54( 2), 301-316. doi:10.1134/S0037446613020134
    • NLM

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0 [Internet]. Siberian Mathematical Journal. 2013 ; 54( 2): 301-316.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S0037446613020134
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0 [Internet]. Siberian Mathematical Journal. 2013 ; 54( 2): 301-316.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1134/S0037446613020134
  • Fonte: Markov Processes and Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUIOL, Herve e MACHADO, Fábio Prates. A stochastic model of evolution. Markov Processes and Related Fields, v. 17, n. 2, p. 253-258, 2011Tradução . . Acesso em: 15 nov. 2024.
    • APA

      Guiol, H., & Machado, F. P. (2011). A stochastic model of evolution. Markov Processes and Related Fields, 17( 2), 253-258.
    • NLM

      Guiol H, Machado FP. A stochastic model of evolution. Markov Processes and Related Fields. 2011 ; 17( 2): 253-258.[citado 2024 nov. 15 ]
    • Vancouver

      Guiol H, Machado FP. A stochastic model of evolution. Markov Processes and Related Fields. 2011 ; 17( 2): 253-258.[citado 2024 nov. 15 ]
  • Fonte: Markov Processes and Related Fields. Unidade: IME

    Assunto: CADEIAS DE MARKOV

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e MASHURIAN, H. e MATZINGER, H. CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields, v. 17, n. 2, p. 209-224, 2011Tradução . . Acesso em: 15 nov. 2024.
    • APA

      Machado, F. P., Mashurian, H., & Matzinger, H. (2011). CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields, 17( 2), 209-224.
    • NLM

      Machado FP, Mashurian H, Matzinger H. CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields. 2011 ; 17( 2): 209-224.[citado 2024 nov. 15 ]
    • Vancouver

      Machado FP, Mashurian H, Matzinger H. CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields. 2011 ; 17( 2): 209-224.[citado 2024 nov. 15 ]

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024