Diffusion approximation for symmetric birth-and-death processes with polynomial rates (2024)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.61102/1024-2953-mprf.2023.29.4.007
- Subjects: PROCESSOS DE NASCIMENTO E MORTE; EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS; PROCESSOS DE DIFUSÃO
- Language: Inglês
- Imprenta:
- Source:
- Título: Markov Processes And Related Fields
- ISSN: 1024-2953
- Volume/Número/Paginação/Ano: v. 29, n. 4, p. 605-618, 2024
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
LOGACHOV, Artem et al. Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, v. 29, n. 4, p. 605-618, 2024Tradução . . Disponível em: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007. Acesso em: 10 jan. 2026. -
APA
Logachov, A., Logachova, O., Pechersky, E., Presman, E., & Iambartsev, A. (2024). Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, 29( 4), 605-618. doi:10.61102/1024-2953-mprf.2023.29.4.007 -
NLM
Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2026 jan. 10 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007 -
Vancouver
Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2026 jan. 10 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007 - Random walks in a queueing network environment
- A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins
- Growth of uniform infinite causal triangulations
- Stochastic ising model with plastic interactions
- Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria
- New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer
- A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations
- Phase transition for the Ising model on the critical Lorentzian triangulation
- Percolation properties of the non-ideal gas
- Selection of control genes for quantitative RT-PCR based on microarray data
Informações sobre o DOI: 10.61102/1024-2953-mprf.2023.29.4.007 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3181702.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
