Random walks in a queueing network environment (2016)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.1017/jpr.2016.12
- Subjects: PROCESSOS DE MARKOV; PASSEIOS ALEATÓRIOS; PROCESSOS ESTACIONÁRIOS
- Keywords: Continuous-time Markov process; queueing network; Jackson network; simple exclusion; zero range; reversibility; stationary probability; product formula
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Applied Probability
- ISSN: 1475-6072
- Volume/Número/Paginação/Ano: v. 53, n. 2, p. 448-462, 2016
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
GANNON, Mark A et al. Random walks in a queueing network environment. Journal of Applied Probability, v. 53, n. 2, p. 448-462, 2016Tradução . . Disponível em: https://doi.org/10.1017/jpr.2016.12. Acesso em: 28 dez. 2025. -
APA
Gannon, M. A., Pechersky, E. A., Suhov, Y. M., & Iambartsev, A. (2016). Random walks in a queueing network environment. Journal of Applied Probability, 53( 2), 448-462. doi:10.1017/jpr.2016.12 -
NLM
Gannon MA, Pechersky EA, Suhov YM, Iambartsev A. Random walks in a queueing network environment [Internet]. Journal of Applied Probability. 2016 ; 53( 2): 448-462.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1017/jpr.2016.12 -
Vancouver
Gannon MA, Pechersky EA, Suhov YM, Iambartsev A. Random walks in a queueing network environment [Internet]. Journal of Applied Probability. 2016 ; 53( 2): 448-462.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1017/jpr.2016.12 - Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria
- On equilibrium distribution of a reversible growth model
- Large deviations for excursions of non-homogeneous Markov processes
- Reverse enGENEering of regulatory networks from big data: a roadmap for biologists
- Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition
- Asymptotic properties of a statistical estimator of the Jeffreys divergence: the case of discrete distributions
- Phase transition for the Ising model on the critical Lorentzian triangulation
- A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations
- Stochastic ising model with plastic interactions
- The local principle of large deviations for compound Poisson process with catastrophes
Informações sobre o DOI: 10.1017/jpr.2016.12 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
