A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins (2014)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.1214/13-BJPS222
- Subjects: MECÂNICA QUÂNTICA; MECÂNICA ESTATÍSTICA; PROCESSOS ESTOCÁSTICOS; GEOMETRIA DIFERENCIAL
- Keywords: Causal Lorentzian triangulations; size-biased critical Galton–Watson branching process; quantum bosonic system with continuous spins; compact Lie group action; the Feynman–Kac representation; FK-DLR equations; reduced density matrix, invariance
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Brazilian Journal of Probability and Statistics
- ISSN: 0103-0752
- Volume/Número/Paginação/Ano: v. 28, n. 4, p. 515-537, 2014
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
KELBERT, Mark e SUHOV, Yu. M e IAMBARTSEV, Anatoli. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, v. 28, n. 4, p. 515-537, 2014Tradução . . Disponível em: https://doi.org/10.1214/13-BJPS222. Acesso em: 23 jan. 2026. -
APA
Kelbert, M., Suhov, Y. M., & Iambartsev, A. (2014). A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, 28( 4), 515-537. doi:10.1214/13-BJPS222 -
NLM
Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1214/13-BJPS222 -
Vancouver
Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1214/13-BJPS222 - Stochastic ising model with plastic interactions
- Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria
- Random walks in a queueing network environment
- Phase transition for the Ising model on the critical Lorentzian triangulation
- Growth of uniform infinite causal triangulations
- The C-SHIFT algorithm for normalizing covariances
- Large fluctuations of radiation in stochastically activated two-level systems
- A Local large deviation principle for inhomogeneous birth–death processes
- Stochastic ising model with plastic interactions
- Percolation properties of the non-ideal gas
Informações sobre o DOI: 10.1214/13-BJPS222 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
