The local principle of large deviations for compound Poisson process with catastrophes (2021)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.1214/20-BJPS472
- Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS; GRANDES DESVIOS
- Keywords: Compound Poisson processes; large deviation principle; local large deviation principle; processes with catastrophes; processes with resettings
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Institute of Mathematical Statistics
- Publisher place: São Paulo
- Date published: 2021
- Source:
- Título: Brazilian Journal of Probability and Statistics
- ISSN: 0103-0752
- Volume/Número/Paginação/Ano: v. 35, n. 2, p. 205-223, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. The local principle of large deviations for compound Poisson process with catastrophes. Brazilian Journal of Probability and Statistics, v. 35, n. 2, p. 205-223, 2021Tradução . . Disponível em: https://doi.org/10.1214/20-BJPS472. Acesso em: 22 jan. 2026. -
APA
Logachov, A., Logachova, O., & Yambartsev, A. (2021). The local principle of large deviations for compound Poisson process with catastrophes. Brazilian Journal of Probability and Statistics, 35( 2), 205-223. doi:10.1214/20-BJPS472 -
NLM
Logachov A, Logachova O, Yambartsev A. The local principle of large deviations for compound Poisson process with catastrophes [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 2): 205-223.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1214/20-BJPS472 -
Vancouver
Logachov A, Logachova O, Yambartsev A. The local principle of large deviations for compound Poisson process with catastrophes [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 2): 205-223.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1214/20-BJPS472 - Random walks in a queueing network environment
- The C-SHIFT algorithm for normalizing covariances
- A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins
- Growth of uniform infinite causal triangulations
- A Local large deviation principle for inhomogeneous birth–death processes
- Phase transition for the Ising model on the critical Lorentzian triangulation
- Large fluctuations of radiation in stochastically activated two-level systems
- Stochastic ising model with plastic interactions
- A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations
- New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer
Informações sobre o DOI: 10.1214/20-BJPS472 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
