Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations (2013)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.1063/1.4808101
- Assunto: MECÂNICA ESTATÍSTICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Mathematical Physics
- ISSN: 0022-2488
- Volume/Número/Paginação/Ano: v. 54, n.6, artigo 063301, p. 1-17, 2013
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HERNANDEZ, Juan et al. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, v. 54, n. 6, p. 1-17, 2013Tradução . . Disponível em: https://doi.org/10.1063/1.4808101. Acesso em: 10 fev. 2026. -
APA
Hernandez, J., Suhov, Y., Iambartsev, A., & Zohren, S. (2013). Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, 54( 6), 1-17. doi:10.1063/1.4808101 -
NLM
Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1063/1.4808101 -
Vancouver
Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1063/1.4808101 - Differentially correlated genes in co-expression networks control phenotype transitions
- Selection of control genes for quantitative RT-PCR based on microarray data
- Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer
- Unexpected links reflect the noise in networks
- Stochastic ising model with plastic interactions
- Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria
- Phase transition for the Ising model on the critical Lorentzian triangulation
- A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins
- Growth of uniform infinite causal triangulations
- The local principle of large deviations for compound Poisson process with catastrophes
Informações sobre o DOI: 10.1063/1.4808101 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas