A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process (2020)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.33048/semi.2020.17.092
- Subjects: GRANDES DESVIOS; ESTATÍSTICAS VITAIS (BIOESTATÍSTICA)
- Keywords: birth and death process; normalization (scaling); large deviations principle; local large deviations principle; rate function
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Novosibirsk
- Date published: 2020
- Source:
- Título: Siberian Electronic Mathematical Reports
- ISSN: 1813-3304
- Volume/Número/Paginação/Ano: v. 17, p. 1258-1269
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
LOGACHOV, Artem Vasilhevic et al. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, v. 17, p. 1258-1269, 2020Tradução . . Disponível em: https://doi.org/10.33048/semi.2020.17.092. Acesso em: 19 fev. 2026. -
APA
Logachov, A. V., Suhov, Y. M., Vvedenskaya, N. D., & Iambartsev, A. (2020). A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, 17, 1258-1269. doi:10.33048/semi.2020.17.092 -
NLM
Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2026 fev. 19 ] Available from: https://doi.org/10.33048/semi.2020.17.092 -
Vancouver
Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2026 fev. 19 ] Available from: https://doi.org/10.33048/semi.2020.17.092 - Differentially correlated genes in co-expression networks control phenotype transitions
- Selection of control genes for quantitative RT-PCR based on microarray data
- Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations
- Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer
- Unexpected links reflect the noise in networks
- Stochastic ising model with plastic interactions
- Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria
- Phase transition for the Ising model on the critical Lorentzian triangulation
- A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins
- Growth of uniform infinite causal triangulations
Informações sobre o DOI: 10.33048/semi.2020.17.092 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3007926.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
