Filtros : "Tahzibi, Ali" "ICMC" Removidos: "Indexado no Compumath Citation Index" "EACH-EACH" "IME-MAC" "1988" "Financiado pelo FUNDECT" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 09 nov. 2024.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2024). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Bulletin of the London Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e ZHANG, Jinhua. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, v. 55, n. 3, p. 1404-1418, 2023Tradução . . Disponível em: https://doi.org/10.1112/blms.12800. Acesso em: 09 nov. 2024.
    • APA

      Tahzibi, A., & Zhang, J. (2023). Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, 55( 3), 1404-1418. doi:10.1112/blms.12800
    • NLM

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1112/blms.12800
    • Vancouver

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1112/blms.12800
  • Unidade: ICMC

    Subjects: DIFEOMORFISMOS, ENTROPIA, FOLHEAÇÕES, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, ESPAÇOS HIPERBÓLICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BECERRA, Richard Javier Cubas. Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta. 2022. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/. Acesso em: 09 nov. 2024.
    • APA

      Becerra, R. J. C. (2022). Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/
    • NLM

      Becerra RJC. Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta [Internet]. 2022 ;[citado 2024 nov. 09 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/
    • Vancouver

      Becerra RJC. Sistemas de medidas Margulis e medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta [Internet]. 2022 ;[citado 2024 nov. 09 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/
  • Source: Annales Scientifiques de l'École Normale Supérieure. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS, DINÂMICA DE FOLHEAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Jérôme e FISHER, Todd e TAHZIBI, Ali. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, v. 55, n. 4, p. 969-1002, 2022Tradução . . Disponível em: https://doi.org/10.24033/asens.2511. Acesso em: 09 nov. 2024.
    • APA

      Buzzi, J., Fisher, T., & Tahzibi, A. (2022). A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, 55( 4), 969-1002. doi:10.24033/asens.2511
    • NLM

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 nov. 09 ] Available from: https://doi.org/10.24033/asens.2511
    • Vancouver

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 nov. 09 ] Available from: https://doi.org/10.24033/asens.2511
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 09 nov. 2024.
    • APA

      Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1
    • NLM

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
    • Vancouver

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 09 nov. 2024.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Portugaliae Mathematica. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA, DIFEOMORFISMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRONZI, Marcus Augusto e TAHZIBI, Ali. Homoclinic tangency and variation of entropy. Portugaliae Mathematica, v. 77, n. 3-4, p. 383-398, 2020Tradução . . Disponível em: https://doi.org/10.4171/PM/2055. Acesso em: 09 nov. 2024.
    • APA

      Bronzi, M. A., & Tahzibi, A. (2020). Homoclinic tangency and variation of entropy. Portugaliae Mathematica, 77( 3-4), 383-398. doi:10.4171/PM/2055
    • NLM

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4171/PM/2055
    • Vancouver

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4171/PM/2055
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e YANG, Jiagang. Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, v. 371, n. 2, p. 1231-1251, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7278. Acesso em: 09 nov. 2024.
    • APA

      Tahzibi, A., & Yang, J. (2019). Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, 371( 2), 1231-1251. doi:10.1090/tran/7278
    • NLM

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/tran/7278
    • Vancouver

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/tran/7278
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2453-2463, 2019Tradução . . Disponível em: https://doi.org/10.1090/proc/14422. Acesso em: 09 nov. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2019). A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, 147( 6), 2453-2463. doi:10.1090/proc/14422
    • NLM

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/proc/14422
    • Vancouver

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/proc/14422
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 09 nov. 2024.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Unidade: ICMC

    Subjects: MATEMÁTICA, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAQUERA, Herbert Milton Ccalle. Teorema de Furstenberg sobre o produto aleatório de matrizes. 2018. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/. Acesso em: 09 nov. 2024.
    • APA

      Maquera, H. M. C. (2018). Teorema de Furstenberg sobre o produto aleatório de matrizes (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/
    • NLM

      Maquera HMC. Teorema de Furstenberg sobre o produto aleatório de matrizes [Internet]. 2018 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/
    • Vancouver

      Maquera HMC. Teorema de Furstenberg sobre o produto aleatório de matrizes [Internet]. 2018 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/
  • Source: Advances in Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, v. 329, p. 329-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2018.02.019. Acesso em: 09 nov. 2024.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2018). On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, 329, 329-360. doi:10.1016/j.aim.2018.02.019
    • NLM

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
    • Vancouver

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
  • Unidade: ICMC

    Subjects: ENTROPIA, FOLHEAÇÕES, DIFEOMORFISMOS, TEORIA ERGÓDICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos. Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3. 2018. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/. Acesso em: 09 nov. 2024.
    • APA

      Rocha, J. E. dos S. (2018). Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/
    • NLM

      Rocha JE dos S. Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 [Internet]. 2018 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/
    • Vancouver

      Rocha JE dos S. Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 [Internet]. 2018 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/
  • Source: Thematic Program. Conference titles: Dynamical Systems School of Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. 2017, Anais.. Tehran: IPM, 2017. Disponível em: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf. Acesso em: 09 nov. 2024.
    • APA

      Tahzibi, A. (2017). Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. In Thematic Program. Tehran: IPM. Recuperado de http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
    • NLM

      Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2024 nov. 09 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
    • Vancouver

      Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2024 nov. 09 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
  • Unidade: ICMC

    Subjects: FOLHEAÇÕES, DIFEOMORFISMOS, ESTABILIDADE DE LIAPUNOV

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos. Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas. 2017. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2017. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072017-145418/. Acesso em: 09 nov. 2024.
    • APA

      Costa, J. S. C. (2017). Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072017-145418/
    • NLM

      Costa JSC. Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas [Internet]. 2017 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072017-145418/
    • Vancouver

      Costa JSC. Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas [Internet]. 2017 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072017-145418/
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEHDIPOUR, P e TAHZIBI, Ali. SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, v. 163, n. 1, p. 139-155, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-016-1458-3. Acesso em: 09 nov. 2024.
    • APA

      Mehdipour, P., & Tahzibi, A. (2016). SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, 163( 1), 139-155. doi:10.1007/s10955-016-1458-3
    • NLM

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
    • Vancouver

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
  • Unidade: ICMC

    Subjects: DIFEOMORFISMOS, ENTROPIA, ESTABILIDADE DE SISTEMAS, TEORIA ERGÓDICA DA MEDIDA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAREJAS, Jorge Luis Crisostomo. Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms. 2016. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2016. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/. Acesso em: 09 nov. 2024.
    • APA

      Parejas, J. L. C. (2016). Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/
    • NLM

      Parejas JLC. Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms [Internet]. 2016 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/
    • Vancouver

      Parejas JLC. Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms [Internet]. 2016 ;[citado 2024 nov. 09 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, v. 235, p. 37-48, 2016Tradução . . Disponível em: https://doi.org/10.4064/fm92-10-2015. Acesso em: 09 nov. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2016). On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, 235, 37-48. doi:10.4064/fm92-10-2015
    • NLM

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4064/fm92-10-2015
    • Vancouver

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4064/fm92-10-2015
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CATALAN, Thiago e TAHZIBI, Ali. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 34, n. 5, p. 1503-1524, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.12. Acesso em: 09 nov. 2024.
    • APA

      Catalan, T., & Tahzibi, A. (2014). A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, 34( 5), 1503-1524. doi:10.1017/etds.2013.12
    • NLM

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/etds.2013.12
    • Vancouver

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/etds.2013.12
  • Source: Journal of Modern Dynamics - JMD. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOGOLEV, Andrey e TAHZIBI, Ali. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, v. 8, n. 3/4, p. 549-576, 2014Tradução . . Disponível em: https://doi.org/10.3934/jmd.2014.8.549. Acesso em: 09 nov. 2024.
    • APA

      Gogolev, A., & Tahzibi, A. (2014). Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, 8( 3/4), 549-576. doi:10.3934/jmd.2014.8.549
    • NLM

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3934/jmd.2014.8.549
    • Vancouver

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3934/jmd.2014.8.549

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024