Filtros : "Martínez, José Mário" Removidos: "Sérvia" "2008" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: OTIMIZAÇÃO NÃO LINEAR

    Disponível em 2025-04-15Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e MARTÍNEZ, José Mário. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10589-024-00572-w. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., Haeser, G., & Martínez, J. M. (2024). Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications. doi:10.1007/s10589-024-00572-w
    • NLM

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2024 ;[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
    • Vancouver

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2024 ;[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, ALGORITMOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A PDE-informed optimization algorithm for river flow predictions. Numerical Algorithms, v. 96, n. 1, p. 289-304, 2024Tradução . . Disponível em: https://doi.org/10.1007/s11075-023-01647-1. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2024). A PDE-informed optimization algorithm for river flow predictions. Numerical Algorithms, 96( 1), 289-304. doi:10.1007/s11075-023-01647-1
    • NLM

      Birgin EJG, Martínez JM. A PDE-informed optimization algorithm for river flow predictions [Internet]. Numerical Algorithms. 2024 ; 96( 1): 289-304.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11075-023-01647-1
    • Vancouver

      Birgin EJG, Martínez JM. A PDE-informed optimization algorithm for river flow predictions [Internet]. Numerical Algorithms. 2024 ; 96( 1): 289-304.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11075-023-01647-1
  • Source: Abstracts. Conference titles: Conference on Optimization - OP23. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. 2023, Anais.. Philadelphia: SIAM, 2023. Disponível em: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2023). Block coordinate descent for smooth nonconvex constrained minimization. In Abstracts. Philadelphia: SIAM. Recuperado de https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2024 nov. 04 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2024 nov. 04 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: INTERPOLAÇÃO, MÉTODOS ITERATIVOS, APROXIMAÇÃO POR MÍNIMOS QUADRADOS, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, v. 81, p. 689–715, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00344-w. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, 81, 689–715. doi:10.1007/s10589-021-00344-w
    • NLM

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
    • Vancouver

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
  • Source: Optimization Methods and Software. Unidade: IME

    Subjects: PROGRAMAÇÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA MÉTODOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e BUENO, Luís Felipe e MARTÍNEZ, José Mário. On the complexity of solving feasibility problems with regularized models. Optimization Methods and Software, v. 37, n. 2, p. 405-424, 2022Tradução . . Disponível em: https://doi.org/10.1080/10556788.2020.1786564. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., Bueno, L. F., & Martínez, J. M. (2022). On the complexity of solving feasibility problems with regularized models. Optimization Methods and Software, 37( 2), 405-424. doi:10.1080/10556788.2020.1786564
    • NLM

      Birgin EJG, Bueno LF, Martínez JM. On the complexity of solving feasibility problems with regularized models [Internet]. Optimization Methods and Software. 2022 ; 37( 2): 405-424.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/10556788.2020.1786564
    • Vancouver

      Birgin EJG, Bueno LF, Martínez JM. On the complexity of solving feasibility problems with regularized models [Internet]. Optimization Methods and Software. 2022 ; 37( 2): 405-424.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/10556788.2020.1786564
  • Source: SIAM Journal on Numerical Analysis. Unidade: IME

    Subjects: ANÁLISE NUMÉRICA, PESQUISA OPERACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations. SIAM Journal on Numerical Analysis, v. 60, n. 6, p. 3145-3180, 2022Tradução . . Disponível em: https://doi.org/10.1137/20M1388024. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations. SIAM Journal on Numerical Analysis, 60( 6), 3145-3180. doi:10.1137/20M1388024
    • NLM

      Birgin EJG, Martínez JM. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations [Internet]. SIAM Journal on Numerical Analysis. 2022 ; 60( 6): 3145-3180.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1137/20M1388024
    • Vancouver

      Birgin EJG, Martínez JM. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations [Internet]. SIAM Journal on Numerical Analysis. 2022 ; 60( 6): 3145-3180.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1137/20M1388024
  • Source: Journal of Global Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, MÉTODOS NUMÉRICOS, ANÁLISE NUMÉRICA, PESQUISA OPERACIONAL, CIÊNCIA DA COMPUTAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMARAL, V. S. et al. On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization, v. 84, p. 527-561, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10898-022-01168-6. Acesso em: 04 nov. 2024.
    • APA

      Amaral, V. S., Andreani, R., Birgin, E. J. G., Marcondes, D. M. S. V., & Martínez, J. M. (2022). On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization, 84, 527-561. doi:10.1007/s10898-022-01168-6
    • NLM

      Amaral VS, Andreani R, Birgin EJG, Marcondes DMSV, Martínez JM. On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization [Internet]. Journal of Global Optimization. 2022 ; 84 527-561.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10898-022-01168-6
    • Vancouver

      Amaral VS, Andreani R, Birgin EJG, Marcondes DMSV, Martínez JM. On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization [Internet]. Journal of Global Optimization. 2022 ; 84 527-561.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10898-022-01168-6
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Source: TOP. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, v. 29, n. 2, p. 417-441, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11750-020-00559-w. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2021). On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, 29( 2), 417-441. doi:10.1007/s11750-020-00559-w
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, COMPUTABILIDADE E COMPLEXIDADE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário e RAMOS, Alberto. On constrained optimization with nonconvex regularization. Numerical Algorithms, v. 86, n. 3, p. 1165-1188, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11075-020-00928-3. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., Martínez, J. M., & Ramos, A. (2021). On constrained optimization with nonconvex regularization. Numerical Algorithms, 86( 3), 1165-1188. doi:10.1007/s11075-020-00928-3
    • NLM

      Birgin EJG, Martínez JM, Ramos A. On constrained optimization with nonconvex regularization [Internet]. Numerical Algorithms. 2021 ; 86( 3): 1165-1188.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11075-020-00928-3
    • Vancouver

      Birgin EJG, Martínez JM, Ramos A. On constrained optimization with nonconvex regularization [Internet]. Numerical Algorithms. 2021 ; 86( 3): 1165-1188.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11075-020-00928-3
  • Source: Optimization Letters. Unidade: IME

    Assunto: OTIMIZAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the use of third-order models with fourth-order regularization for unconstrained optimization. Optimization Letters, v. 14, n. 4, p. 815-838, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11590-019-01395-z. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2020). On the use of third-order models with fourth-order regularization for unconstrained optimization. Optimization Letters, 14( 4), 815-838. doi:10.1007/s11590-019-01395-z
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the use of third-order models with fourth-order regularization for unconstrained optimization [Internet]. Optimization Letters. 2020 ; 14( 4): 815-838.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11590-019-01395-z
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the use of third-order models with fourth-order regularization for unconstrained optimization [Internet]. Optimization Letters. 2020 ; 14( 4): 815-838.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11590-019-01395-z
  • Source: Optimization Methods and Software. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE DE ALGORITMOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, v. 35, n. 5, p. 885-920, 2020Tradução . . Disponível em: https://doi.org/10.1080/10556788.2020.1746962. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2020). Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, 35( 5), 885-920. doi:10.1080/10556788.2020.1746962
    • NLM

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
    • Vancouver

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
  • Source: Conference book. Conference titles: International Conference on Continuous Optimization - ICCOPT. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. 2019, Anais.. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS), 2019. Disponível em: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. In Conference book. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS). Recuperado de https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • NLM

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2024 nov. 04 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • Vancouver

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2024 nov. 04 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
  • Source: Program & abstracts book. Conference titles: International Congress on Industrial and Applied Mathematics - ICIAM. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. 2019, Anais.. Madrid: Sociedad Española de Matemática Aplicada (SeMA), 2019. Disponível em: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. In Program & abstracts book. Madrid: Sociedad Española de Matemática Aplicada (SeMA). Recuperado de https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
    • NLM

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Program & abstracts book. 2019 ;[citado 2024 nov. 04 ] Available from: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
    • Vancouver

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Program & abstracts book. 2019 ;[citado 2024 nov. 04 ] Available from: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
  • Source: Pré-Anais. Conference titles: Simpósio Brasileiro de Pesquisa Operacional - SBPO. Unidade: IME

    Subjects: OTIMIZAÇÃO RESTRITA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário e PRUDENTE, Leandro da Fonseca. Global nonlinear programming with possible infeasibility and finite termination. 2012, Anais.. Rio de Janeiro: SOBRAPO, 2012. Disponível em: http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., Martínez, J. M., & Prudente, L. da F. (2012). Global nonlinear programming with possible infeasibility and finite termination. In Pré-Anais. Rio de Janeiro: SOBRAPO. Recuperado de http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf
    • NLM

      Birgin EJG, Martínez JM, Prudente L da F. Global nonlinear programming with possible infeasibility and finite termination [Internet]. Pré-Anais. 2012 ;[citado 2024 nov. 04 ] Available from: http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf
    • Vancouver

      Birgin EJG, Martínez JM, Prudente L da F. Global nonlinear programming with possible infeasibility and finite termination [Internet]. Pré-Anais. 2012 ;[citado 2024 nov. 04 ] Available from: http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf
  • Source: Numerical Algorithms. Unidades: ICMC, IME

    Assunto: ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRETTA, Marina e BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numerical Algorithms, v. 53, n. 1, p. 23-52, 2010Tradução . . Disponível em: https://doi.org/10.1007/s11075-009-9289-9. Acesso em: 04 nov. 2024.
    • APA

      Andretta, M., Birgin, E. J. G., & Martínez, J. M. (2010). Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numerical Algorithms, 53( 1), 23-52. doi:10.1007/s11075-009-9289-9
    • NLM

      Andretta M, Birgin EJG, Martínez JM. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization [Internet]. Numerical Algorithms. 2010 ; 53( 1): 23-52.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11075-009-9289-9
    • Vancouver

      Andretta M, Birgin EJG, Martínez JM. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization [Internet]. Numerical Algorithms. 2010 ; 53( 1): 23-52.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s11075-009-9289-9
  • Source: Computers and Operations Research. Unidades: IME, EP

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Computers and Operations Research, v. 33, n. 12, p. 3535-3548, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.cor.2005.03.031. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., Martínez, J. M., Nishihara, F. H., & Ronconi, D. P. (2006). Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Computers and Operations Research, 33( 12), 3535-3548. doi:10.1016/j.cor.2005.03.031
    • NLM

      Birgin EJG, Martínez JM, Nishihara FH, Ronconi DP. Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization [Internet]. Computers and Operations Research. 2006 ; 33( 12): 3535-3548.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.cor.2005.03.031
    • Vancouver

      Birgin EJG, Martínez JM, Nishihara FH, Ronconi DP. Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization [Internet]. Computers and Operations Research. 2006 ; 33( 12): 3535-3548.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.cor.2005.03.031
  • Source: IMA Journal of Numerical Analysis. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Spectral projected gradient and variable metric methods for optimization with linear inequalities. IMA Journal of Numerical Analysis, v. 25, n. 2, p. 221-252, 2005Tradução . . Disponível em: https://doi.org/10.1093/imanum/drh020. Acesso em: 04 nov. 2024.
    • APA

      Andreani, R., Birgin, E. J. G., Martínez, J. M., & Yuan, J. Y. (2005). Spectral projected gradient and variable metric methods for optimization with linear inequalities. IMA Journal of Numerical Analysis, 25( 2), 221-252. doi:10.1093/imanum/drh020
    • NLM

      Andreani R, Birgin EJG, Martínez JM, Yuan JY. Spectral projected gradient and variable metric methods for optimization with linear inequalities [Internet]. IMA Journal of Numerical Analysis. 2005 ; 25( 2): 221-252.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1093/imanum/drh020
    • Vancouver

      Andreani R, Birgin EJG, Martínez JM, Yuan JY. Spectral projected gradient and variable metric methods for optimization with linear inequalities [Internet]. IMA Journal of Numerical Analysis. 2005 ; 25( 2): 221-252.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1093/imanum/drh020
  • Source: Optimization, Oxon. Unidade: IME

    Assunto: ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRETTA, Marina e BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization. Optimization, Oxon, v. 54, n. 3, p. 305-325, 2005Tradução . . Disponível em: https://doi.org/10.1080/02331930500100270. Acesso em: 04 nov. 2024.
    • APA

      Andretta, M., Birgin, E. J. G., & Martínez, J. M. (2005). Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization. Optimization, Oxon, 54( 3), 305-325. doi:10.1080/02331930500100270
    • NLM

      Andretta M, Birgin EJG, Martínez JM. Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization [Internet]. Optimization, Oxon. 2005 ; 54( 3): 305-325.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/02331930500100270
    • Vancouver

      Andretta M, Birgin EJG, Martínez JM. Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization [Internet]. Optimization, Oxon. 2005 ; 54( 3): 305-325.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/02331930500100270
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, v. 127, n. 2, p. 229-247, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10957-005-6537-6. Acesso em: 04 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2005). Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, 127( 2), 229-247. doi:10.1007/s10957-005-6537-6
    • NLM

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10957-005-6537-6
    • Vancouver

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10957-005-6537-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024