Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations (2022)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1137/20M1388024
- Subjects: ANÁLISE NUMÉRICA; PESQUISA OPERACIONAL
- Keywords: nonlinear systems of equations; sequential residual methods; acceleration; large-scale problems
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Philadelphia
- Date published: 2022
- Source:
- Título: SIAM Journal on Numerical Analysis
- ISSN: 0036-1429
- Volume/Número/Paginação/Ano: v. 60, n. 6, p. 3145-3180, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations. SIAM Journal on Numerical Analysis, v. 60, n. 6, p. 3145-3180, 2022Tradução . . Disponível em: https://doi.org/10.1137/20M1388024. Acesso em: 18 fev. 2026. -
APA
Birgin, E. J. G., & Martínez, J. M. (2022). Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations. SIAM Journal on Numerical Analysis, 60( 6), 3145-3180. doi:10.1137/20M1388024 -
NLM
Birgin EJG, Martínez JM. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations [Internet]. SIAM Journal on Numerical Analysis. 2022 ; 60( 6): 3145-3180.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1137/20M1388024 -
Vancouver
Birgin EJG, Martínez JM. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations [Internet]. SIAM Journal on Numerical Analysis. 2022 ; 60( 6): 3145-3180.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1137/20M1388024 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1137/20M1388024 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
