Filtros : "Bettiol, Renato Ghini" "Piccione, Paolo" Removido: "GEOMETRIA GLOBAL" Limpar

Filtros



Refine with date range


  • Source: Annales de l’institut Fourier. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL CONFORME, GEOMETRIA RIEMANNIANA, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo. Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l’institut Fourier, v. 68, n. 2, p. 589-609, 2018Tradução . . Disponível em: https://doi.org/10.5802/aif.3172. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., & Piccione, P. (2018). Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l’institut Fourier, 68( 2), 589-609. doi:10.5802/aif.3172
    • NLM

      Bettiol RG, Piccione P. Infinitely many solutions to the Yamabe problem on noncompact manifolds [Internet]. Annales de l’institut Fourier. 2018 ; 68( 2): 589-609.[citado 2024 nov. 07 ] Available from: https://doi.org/10.5802/aif.3172
    • Vancouver

      Bettiol RG, Piccione P. Infinitely many solutions to the Yamabe problem on noncompact manifolds [Internet]. Annales de l’institut Fourier. 2018 ; 68( 2): 589-609.[citado 2024 nov. 07 ] Available from: https://doi.org/10.5802/aif.3172
  • Source: Annali di Matematica Pura ed Applicata. Unidade: IME

    Subjects: SUBGRUPOS DISCRETOS, GRUPOS DE LIE, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e DERDZINSKI, Andrzej e PICCIONE, Paolo. Teichmüller theory and collapse of flat manifolds. Annali di Matematica Pura ed Applicata, v. 197, n. 4, p. 1247-1268, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10231-017-0723-7. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., Derdzinski, A., & Piccione, P. (2018). Teichmüller theory and collapse of flat manifolds. Annali di Matematica Pura ed Applicata, 197( 4), 1247-1268. doi:10.1007/s10231-017-0723-7
    • NLM

      Bettiol RG, Derdzinski A, Piccione P. Teichmüller theory and collapse of flat manifolds [Internet]. Annali di Matematica Pura ed Applicata. 2018 ; 197( 4): 1247-1268.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s10231-017-0723-7
    • Vancouver

      Bettiol RG, Derdzinski A, Piccione P. Teichmüller theory and collapse of flat manifolds [Internet]. Annali di Matematica Pura ed Applicata. 2018 ; 197( 4): 1247-1268.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s10231-017-0723-7
  • Source: Journal of Differential Geometry. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, TEORIA DA BIFURCAÇÃO, GEOMETRIA RIEMANNIANA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo e SANTORO, Bianca. Bifurcation of periodic solutions to the singular Yamabe problem on spheres. Journal of Differential Geometry, v. 103, n. 2, p. 191-205, 2016Tradução . . Disponível em: https://doi.org/10.4310/jdg/1463404117. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., Piccione, P., & Santoro, B. (2016). Bifurcation of periodic solutions to the singular Yamabe problem on spheres. Journal of Differential Geometry, 103( 2), 191-205. doi:10.4310/jdg/1463404117
    • NLM

      Bettiol RG, Piccione P, Santoro B. Bifurcation of periodic solutions to the singular Yamabe problem on spheres [Internet]. Journal of Differential Geometry. 2016 ; 103( 2): 191-205.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4310/jdg/1463404117
    • Vancouver

      Bettiol RG, Piccione P, Santoro B. Bifurcation of periodic solutions to the singular Yamabe problem on spheres [Internet]. Journal of Differential Geometry. 2016 ; 103( 2): 191-205.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4310/jdg/1463404117
  • Source: International Mathematics Research Notices. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL, GEOMETRIA RIEMANNIANA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo. Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds. International Mathematics Research Notices, n. 10, p. 3124-3162, 2016Tradução . . Disponível em: https://doi.org/10.1093/imrn/rnv231. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., & Piccione, P. (2016). Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds. International Mathematics Research Notices, ( 10), 3124-3162. doi:10.1093/imrn/rnv231
    • NLM

      Bettiol RG, Piccione P. Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds [Internet]. International Mathematics Research Notices. 2016 ;( 10): 3124-3162.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1093/imrn/rnv231
    • Vancouver

      Bettiol RG, Piccione P. Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds [Internet]. International Mathematics Research Notices. 2016 ;( 10): 3124-3162.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1093/imrn/rnv231
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL NÃO LINEAR, OPERADORES NÃO LINEARES, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo e SICILIANO, Gaetano. On the equivariant implicit function theorem with low regularity and applications to geometric variational problems. Proceedings of the Edinburgh Mathematical Society, v. 58, n. 1, p. 53-80, 2015Tradução . . Disponível em: https://doi.org/10.1017/S0013091513000631. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., Piccione, P., & Siciliano, G. (2015). On the equivariant implicit function theorem with low regularity and applications to geometric variational problems. Proceedings of the Edinburgh Mathematical Society, 58( 1), 53-80. doi:10.1017/S0013091513000631
    • NLM

      Bettiol RG, Piccione P, Siciliano G. On the equivariant implicit function theorem with low regularity and applications to geometric variational problems [Internet]. Proceedings of the Edinburgh Mathematical Society. 2015 ; 58( 1): 53-80.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1017/S0013091513000631
    • Vancouver

      Bettiol RG, Piccione P, Siciliano G. On the equivariant implicit function theorem with low regularity and applications to geometric variational problems [Internet]. Proceedings of the Edinburgh Mathematical Society. 2015 ; 58( 1): 53-80.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1017/S0013091513000631
  • Source: Analysis and topology in nonlinear differential equations: a tribute to Bernhard Ruf on the occasion of his 60th birthday. Unidade: IME

    Subjects: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS, CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo e SICILIANO, Gaetano. Equivariant bifurcation in geometric variational problems. Analysis and topology in nonlinear differential equations: a tribute to Bernhard Ruf on the occasion of his 60th birthday. Tradução . Cham: Springer, 2014. . Disponível em: https://doi.org/10.1007/978-3-319-04214-5_6. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., Piccione, P., & Siciliano, G. (2014). Equivariant bifurcation in geometric variational problems. In Analysis and topology in nonlinear differential equations: a tribute to Bernhard Ruf on the occasion of his 60th birthday. Cham: Springer. doi:10.1007/978-3-319-04214-5_6
    • NLM

      Bettiol RG, Piccione P, Siciliano G. Equivariant bifurcation in geometric variational problems [Internet]. In: Analysis and topology in nonlinear differential equations: a tribute to Bernhard Ruf on the occasion of his 60th birthday. Cham: Springer; 2014. [citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/978-3-319-04214-5_6
    • Vancouver

      Bettiol RG, Piccione P, Siciliano G. Equivariant bifurcation in geometric variational problems [Internet]. In: Analysis and topology in nonlinear differential equations: a tribute to Bernhard Ruf on the occasion of his 60th birthday. Cham: Springer; 2014. [citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/978-3-319-04214-5_6
  • Source: Transformation Groups. Unidade: IME

    Subjects: GRUPOS DE LIE, PSEUDOGRUPOS, ANÁLISE GLOBAL, GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo e SICILIANO, Gaetano. Deforming solutions of geometric variational problems with varying symmetry groups. Transformation Groups, v. 19, n. 4, p. 941-968, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00031-014-9277-6. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., Piccione, P., & Siciliano, G. (2014). Deforming solutions of geometric variational problems with varying symmetry groups. Transformation Groups, 19( 4), 941-968. doi:10.1007/s00031-014-9277-6
    • NLM

      Bettiol RG, Piccione P, Siciliano G. Deforming solutions of geometric variational problems with varying symmetry groups [Internet]. Transformation Groups. 2014 ; 19( 4): 941-968.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00031-014-9277-6
    • Vancouver

      Bettiol RG, Piccione P, Siciliano G. Deforming solutions of geometric variational problems with varying symmetry groups [Internet]. Transformation Groups. 2014 ; 19( 4): 941-968.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00031-014-9277-6
  • Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini. Propriedades genéricas de fluxos geodésicos semi-Riemannianos. 2010. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2010. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-21072010-170243/. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G. (2010). Propriedades genéricas de fluxos geodésicos semi-Riemannianos (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-21072010-170243/
    • NLM

      Bettiol RG. Propriedades genéricas de fluxos geodésicos semi-Riemannianos [Internet]. 2010 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-21072010-170243/
    • Vancouver

      Bettiol RG. Propriedades genéricas de fluxos geodésicos semi-Riemannianos [Internet]. 2010 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-21072010-170243/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024