Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds (2016)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1093/imrn/rnv231
- Subjects: GEOMETRIA DIFERENCIAL; ANÁLISE GLOBAL; GEOMETRIA RIEMANNIANA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: International Mathematics Research Notices
- ISSN: 1073-7928
- Volume/Número/Paginação/Ano: n. 10, p. 3124-3162, 2016
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BETTIOL, Renato Ghini e PICCIONE, Paolo. Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds. International Mathematics Research Notices, n. 10, p. 3124-3162, 2016Tradução . . Disponível em: https://doi.org/10.1093/imrn/rnv231. Acesso em: 13 fev. 2026. -
APA
Bettiol, R. G., & Piccione, P. (2016). Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds. International Mathematics Research Notices, ( 10), 3124-3162. doi:10.1093/imrn/rnv231 -
NLM
Bettiol RG, Piccione P. Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds [Internet]. International Mathematics Research Notices. 2016 ;( 10): 3124-3162.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1093/imrn/rnv231 -
Vancouver
Bettiol RG, Piccione P. Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds [Internet]. International Mathematics Research Notices. 2016 ;( 10): 3124-3162.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1093/imrn/rnv231 - Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions
- Morse theory for geodesics in singular conformal metrics
- Almost isometries of non-reversible metrics with applications to stationary spacetimes
- On the finiteness of light rays between a source and an observer on conformally stationary space-times
- Naked singularities formation in the gravitational collapse of barotropic spherical fluids
- Convexity and the finiteness of the number of geodesics: applications to the multiple-image effect
- New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres
Informações sobre o DOI: 10.1093/imrn/rnv231 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
