Bifurcation of periodic solutions to the singular Yamabe problem on spheres (2016)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.4310/jdg/1463404117
- Subjects: GEOMETRIA DIFERENCIAL; TEORIA DA BIFURCAÇÃO; GEOMETRIA RIEMANNIANA
- Language: Inglês
- Imprenta:
- Publisher place: Somerville
- Date published: 2016
- Source:
- Título: Journal of Differential Geometry
- ISSN: 1945-743X
- Volume/Número/Paginação/Ano: v. 103, n. 2, p. 191-205, June 2016
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BETTIOL, Renato Ghini e PICCIONE, Paolo e SANTORO, Bianca. Bifurcation of periodic solutions to the singular Yamabe problem on spheres. Journal of Differential Geometry, v. 103, n. 2, p. 191-205, 2016Tradução . . Disponível em: https://doi.org/10.4310/jdg/1463404117. Acesso em: 29 jan. 2026. -
APA
Bettiol, R. G., Piccione, P., & Santoro, B. (2016). Bifurcation of periodic solutions to the singular Yamabe problem on spheres. Journal of Differential Geometry, 103( 2), 191-205. doi:10.4310/jdg/1463404117 -
NLM
Bettiol RG, Piccione P, Santoro B. Bifurcation of periodic solutions to the singular Yamabe problem on spheres [Internet]. Journal of Differential Geometry. 2016 ; 103( 2): 191-205.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1463404117 -
Vancouver
Bettiol RG, Piccione P, Santoro B. Bifurcation of periodic solutions to the singular Yamabe problem on spheres [Internet]. Journal of Differential Geometry. 2016 ; 103( 2): 191-205.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1463404117 - Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results
- A variational theory for hight rays on Lorentz manifolds
- Shortening null geodesics in Lorentzian manifolds: applications to closed light rays
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
- Naked singularities formation in perfect fluid collapse
Informações sobre o DOI: 10.4310/jdg/1463404117 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
