Filtros : "TEORIA ERGÓDICA" "Ergodic Theory and Dynamical Systems" Removidos: "Financiado pelo CNRS" "Financiamento CAPES" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 10 nov. 2024.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2024). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: VARIEDADES COMPLEXAS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAKATOS, Ulisses e TAL, Fábio Armando. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive. Ergodic Theory and Dynamical Systems, v. 44, n. 4, p. 1102-1122, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2023.32. Acesso em: 10 nov. 2024.
    • APA

      Lakatos, U., & Tal, F. A. (2024). Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive. Ergodic Theory and Dynamical Systems, 44( 4), 1102-1122. doi:10.1017/etds.2023.32
    • NLM

      Lakatos U, Tal FA. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive [Internet]. Ergodic Theory and Dynamical Systems. 2024 ; 44( 4): 1102-1122.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2023.32
    • Vancouver

      Lakatos U, Tal FA. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive [Internet]. Ergodic Theory and Dynamical Systems. 2024 ; 44( 4): 1102-1122.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2023.32
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CLARK, Trevor e FARIA, Edson de e STRIEN, Sebastian van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, v. 43, n. 11, p. 3636-3684, 2023Tradução . . Disponível em: https://doi.org/10.1017/etds.2022.72. Acesso em: 10 nov. 2024.
    • APA

      Clark, T., Faria, E. de, & Strien, S. van. (2023). Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, 43( 11), 3636-3684. doi:10.1017/etds.2022.72
    • NLM

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2022.72
    • Vancouver

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2022.72
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, M. et al. Return-time Lq-spectrum for equilibrium states with potentials of summable variation. Ergodic Theory and Dynamical Systems, n. , p. 2489-2515-, 2022Tradução . . Disponível em: https://doi.org/10.1017/etds.2022.40. Acesso em: 10 nov. 2024.
    • APA

      Abadi, M., Amorim, V., Chazottes, J. -R., & Gallo, S. (2022). Return-time Lq-spectrum for equilibrium states with potentials of summable variation. Ergodic Theory and Dynamical Systems, ( ), 2489-2515-. doi:10.1017/etds.2022.40
    • NLM

      Abadi M, Amorim V, Chazottes J-R, Gallo S. Return-time Lq-spectrum for equilibrium states with potentials of summable variation [Internet]. Ergodic Theory and Dynamical Systems. 2022 ;( ): 2489-2515-.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2022.40
    • Vancouver

      Abadi M, Amorim V, Chazottes J-R, Gallo S. Return-time Lq-spectrum for equilibrium states with potentials of summable variation [Internet]. Ergodic Theory and Dynamical Systems. 2022 ;( ): 2489-2515-.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2022.40
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, INVARIANTES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Shy shadows of infinite-dimensional partially hyperbolic invariant sets. Ergodic Theory and Dynamical Systems, v. 39, n. 5, p. 1361-1400, 2019Tradução . . Disponível em: https://doi.org/10.1017/etds.2017.65. Acesso em: 10 nov. 2024.
    • APA

      Smania, D. (2019). Shy shadows of infinite-dimensional partially hyperbolic invariant sets. Ergodic Theory and Dynamical Systems, 39( 5), 1361-1400. doi:10.1017/etds.2017.65
    • NLM

      Smania D. Shy shadows of infinite-dimensional partially hyperbolic invariant sets [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 5): 1361-1400.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2017.65
    • Vancouver

      Smania D. Shy shadows of infinite-dimensional partially hyperbolic invariant sets [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 5): 1361-1400.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2017.65
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e GARIBALDI, Eduardo e THIEULLEN, Philippe. Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergodic Theory and Dynamical Systems, v. 38, n. 3, p. 863-885, 2018Tradução . . Disponível em: https://doi.org/10.1017/etds.2016.57. Acesso em: 10 nov. 2024.
    • APA

      Bissacot, R., Garibaldi, E., & Thieullen, P. (2018). Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergodic Theory and Dynamical Systems, 38( 3), 863-885. doi:10.1017/etds.2016.57
    • NLM

      Bissacot R, Garibaldi E, Thieullen P. Zero-temperature phase diagram for double-well type potentials in the summable variation class [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 3): 863-885.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2016.57
    • Vancouver

      Bissacot R, Garibaldi E, Thieullen P. Zero-temperature phase diagram for double-well type potentials in the summable variation class [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 3): 863-885.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2016.57
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOROPECKI, Andres e TAL, Fábio Armando. Fully essential dynamics for area-preserving surface homeomorphisms. Ergodic Theory and Dynamical Systems, v. 38, n. 5, p. 1791-1836, 2018Tradução . . Disponível em: https://doi.org/10.1017/etds.2016.110. Acesso em: 10 nov. 2024.
    • APA

      Koropecki, A., & Tal, F. A. (2018). Fully essential dynamics for area-preserving surface homeomorphisms. Ergodic Theory and Dynamical Systems, 38( 5), 1791-1836. doi:10.1017/etds.2016.110
    • NLM

      Koropecki A, Tal FA. Fully essential dynamics for area-preserving surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 5): 1791-1836.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2016.110
    • Vancouver

      Koropecki A, Tal FA. Fully essential dynamics for area-preserving surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 5): 1791-1836.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2016.110
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, POLINÔMIOS, FUNÇÕES INTEIRAS, FUNÇÕES MEROMORFAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOMONACO, Luna. Parabolic-like mappings. Ergodic Theory and Dynamical Systems, v. 35, n. 07, p. 2171-2197, 2015Tradução . . Disponível em: https://doi.org/10.1017/etds.2014.27. Acesso em: 10 nov. 2024.
    • APA

      Lomonaco, L. (2015). Parabolic-like mappings. Ergodic Theory and Dynamical Systems, 35( 07), 2171-2197. doi:10.1017/etds.2014.27
    • NLM

      Lomonaco L. Parabolic-like mappings [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 07): 2171-2197.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2014.27
    • Vancouver

      Lomonaco L. Parabolic-like mappings [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 07): 2171-2197.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2014.27
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOYLAND, Philip e CARVALHO, André Salles de e HALL, Toby. Symbol ratio minimax sequences in the lexicographic order. Ergodic Theory and Dynamical Systems, v. 35, n. 8. p. 2371-2396, 2015Tradução . . Disponível em: https://doi.org/10.1017/etds.2014.44. Acesso em: 10 nov. 2024.
    • APA

      Boyland, P., Carvalho, A. S. de, & Hall, T. (2015). Symbol ratio minimax sequences in the lexicographic order. Ergodic Theory and Dynamical Systems, 35( 8. p. 2371-2396). doi:10.1017/etds.2014.44
    • NLM

      Boyland P, Carvalho AS de, Hall T. Symbol ratio minimax sequences in the lexicographic order [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 8. p. 2371-2396):[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2014.44
    • Vancouver

      Boyland P, Carvalho AS de, Hall T. Symbol ratio minimax sequences in the lexicographic order [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 8. p. 2371-2396):[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2014.44
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e FREIRE JÚNIOR, Ricardo dos Santos. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, v. 34, n. 4, p. 1103-1115, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2012.194. Acesso em: 10 nov. 2024.
    • APA

      Bissacot, R., & Freire Júnior, R. dos S. (2014). On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, 34( 4), 1103-1115. doi:10.1017/etds.2012.194
    • NLM

      Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2012.194
    • Vancouver

      Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2012.194
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CATALAN, Thiago e TAHZIBI, Ali. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 34, n. 5, p. 1503-1524, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.12. Acesso em: 10 nov. 2024.
    • APA

      Catalan, T., & Tahzibi, A. (2014). A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, 34( 5), 1503-1524. doi:10.1017/etds.2013.12
    • NLM

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2013.12
    • Vancouver

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2013.12
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEORIA DOS NÚMEROS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FISHER, Albert Meads e SCHMIDT, Thomas A. Distribution of approximants and geodesic flows. Ergodic Theory and Dynamical Systems, v. 34, n. 6, p. 1832-1848, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.23. Acesso em: 10 nov. 2024.
    • APA

      Fisher, A. M., & Schmidt, T. A. (2014). Distribution of approximants and geodesic flows. Ergodic Theory and Dynamical Systems, 34( 6), 1832-1848. doi:10.1017/etds.2013.23
    • NLM

      Fisher AM, Schmidt TA. Distribution of approximants and geodesic flows [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 6): 1832-1848.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2013.23
    • Vancouver

      Fisher AM, Schmidt TA. Distribution of approximants and geodesic flows [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 6): 1832-1848.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2013.23
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, F. Rodriguez et al. Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory and Dynamical Systems, v. 32, n. 2, p. 825-839, 2012Tradução . . Disponível em: https://doi.org/10.1017/S0143385711000757. Acesso em: 10 nov. 2024.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2012). Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory and Dynamical Systems, 32( 2), 825-839. doi:10.1017/S0143385711000757
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Maximizing measures for partially hyperbolic systems with compact center leaves [Internet]. Ergodic Theory and Dynamical Systems. 2012 ; 32( 2): 825-839.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/S0143385711000757
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Maximizing measures for partially hyperbolic systems with compact center leaves [Internet]. Ergodic Theory and Dynamical Systems. 2012 ; 32( 2): 825-839.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/S0143385711000757
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOT, Thierry e MAQUERA APAZA, Carlos Alberto. Transitivity of codimension-one Anosov actions of '/Re POT.k' on closed manifolds. Ergodic Theory and Dynamical Systems, v. 31, n. 3, p. 1-22, 2011Tradução . . Disponível em: https://doi.org/10.1017/S0143385709001023. Acesso em: 10 nov. 2024.
    • APA

      Barbot, T., & Maquera Apaza, C. A. (2011). Transitivity of codimension-one Anosov actions of '/Re POT.k' on closed manifolds. Ergodic Theory and Dynamical Systems, 31( 3), 1-22. doi:10.1017/S0143385709001023
    • NLM

      Barbot T, Maquera Apaza CA. Transitivity of codimension-one Anosov actions of '/Re POT.k' on closed manifolds [Internet]. Ergodic Theory and Dynamical Systems. 2011 ; 31( 3): 1-22.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/S0143385709001023
    • Vancouver

      Barbot T, Maquera Apaza CA. Transitivity of codimension-one Anosov actions of '/Re POT.k' on closed manifolds [Internet]. Ergodic Theory and Dynamical Systems. 2011 ; 31( 3): 1-22.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/S0143385709001023

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024