Filtros : "REDES COMPLEXAS" "Financiamento CNPq" "IFSC" Removidos: "República Tcheca" "EESC-SEM" "HARTMANN, BETTI" "MZ" Limpar

Filtros



Limitar por data


  • Fonte: Chaos, Solitons and Fractals. Unidade: IFSC

    Assuntos: RECONHECIMENTO DE PADRÕES, FRACTAIS, FÍSICA COMPUTACIONAL, REDES COMPLEXAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENATTI, Alexandre e COSTA, Luciano da Fontoura. On the transient and equilibrium features of growing fractal complex networks. Chaos, Solitons and Fractals, v. 183, p. 114904-1-114904-7, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2024.114904. Acesso em: 04 nov. 2024.
    • APA

      Benatti, A., & Costa, L. da F. (2024). On the transient and equilibrium features of growing fractal complex networks. Chaos, Solitons and Fractals, 183, 114904-1-114904-7. doi:10.1016/j.chaos.2024.114904
    • NLM

      Benatti A, Costa L da F. On the transient and equilibrium features of growing fractal complex networks [Internet]. Chaos, Solitons and Fractals. 2024 ; 183 114904-1-114904-7.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.chaos.2024.114904
    • Vancouver

      Benatti A, Costa L da F. On the transient and equilibrium features of growing fractal complex networks [Internet]. Chaos, Solitons and Fractals. 2024 ; 183 114904-1-114904-7.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.chaos.2024.114904
  • Fonte: Physica A. Unidades: IFSC, ICMC

    Assuntos: REDES NEURAIS, RECONHECIMENTO DE PADRÕES, APRENDIZAGEM PROFUNDA, REDES COMPLEXAS, TEXTURA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBAS, Lucas Correia et al. Color-texture classification based on spatio-spectral complex network representations. Physica A, v. 635, p. 129518-1-129518-15, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.physa.2024.129518. Acesso em: 04 nov. 2024.
    • APA

      Ribas, L. C., Scabini, L. F. dos S., Condori, R. H. M., & Bruno, O. M. (2024). Color-texture classification based on spatio-spectral complex network representations. Physica A, 635, 129518-1-129518-15. doi:10.1016/j.physa.2024.129518
    • NLM

      Ribas LC, Scabini LF dos S, Condori RHM, Bruno OM. Color-texture classification based on spatio-spectral complex network representations [Internet]. Physica A. 2024 ; 635 129518-1-129518-15.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.physa.2024.129518
    • Vancouver

      Ribas LC, Scabini LF dos S, Condori RHM, Bruno OM. Color-texture classification based on spatio-spectral complex network representations [Internet]. Physica A. 2024 ; 635 129518-1-129518-15.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.physa.2024.129518
  • Fonte: Pattern Recognition. Unidades: IFSC, EP

    Assuntos: REDES COMPLEXAS, REDES NEURAIS, VISÃO COMPUTACIONAL, TEXTURA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZIELINSKI, Kallil Miguel Caparroz et al. A network classification method based on density time evolution patterns extracted from network automata. Pattern Recognition, v. 146, p. 109802-1-109802-13 + supplementary materials, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.patcog.2023.109946. Acesso em: 04 nov. 2024.
    • APA

      Zielinski, K. M. C., Ribas, L. C., Machicao, J., & Bruno, O. M. (2024). A network classification method based on density time evolution patterns extracted from network automata. Pattern Recognition, 146, 109802-1-109802-13 + supplementary materials. doi:10.1016/j.patcog.2023.109946
    • NLM

      Zielinski KMC, Ribas LC, Machicao J, Bruno OM. A network classification method based on density time evolution patterns extracted from network automata [Internet]. Pattern Recognition. 2024 ; 146 109802-1-109802-13 + supplementary materials.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.patcog.2023.109946
    • Vancouver

      Zielinski KMC, Ribas LC, Machicao J, Bruno OM. A network classification method based on density time evolution patterns extracted from network automata [Internet]. Pattern Recognition. 2024 ; 146 109802-1-109802-13 + supplementary materials.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.patcog.2023.109946
  • Fonte: Pattern Recognition. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, REDES NEURAIS, VISÃO COMPUTACIONAL, TEXTURA, RECONHECIMENTO DE PADRÕES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBAS, Lucas Correia e BRUNO, Odemir Martinez. Learning a complex network representation for shape classification. Pattern Recognition, v. 154, p. 110566-1-110566-10 + supplementary data, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.patcog.2024.110566. Acesso em: 04 nov. 2024.
    • APA

      Ribas, L. C., & Bruno, O. M. (2024). Learning a complex network representation for shape classification. Pattern Recognition, 154, 110566-1-110566-10 + supplementary data. doi:10.1016/j.patcog.2024.110566
    • NLM

      Ribas LC, Bruno OM. Learning a complex network representation for shape classification [Internet]. Pattern Recognition. 2024 ; 154 110566-1-110566-10 + supplementary data.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.patcog.2024.110566
    • Vancouver

      Ribas LC, Bruno OM. Learning a complex network representation for shape classification [Internet]. Pattern Recognition. 2024 ; 154 110566-1-110566-10 + supplementary data.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.patcog.2024.110566
  • Fonte: Pattern Recognition. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, REDES NEURAIS, VISÃO COMPUTACIONAL, TEXTURA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCABINI, Leonardo Felipe dos Santos et al. RADAM: texture recognition through randomized aggregated encoding of deep activation maps. Pattern Recognition, v. No 2023, p. 109802-1-109802-13 + supplementary materials, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.patcog.2023.109802. Acesso em: 04 nov. 2024.
    • APA

      Scabini, L. F. dos S., Zielinski, K. M. C., Ribas, L. C., Gonçalves, W. N., Baets, B. D., & Bruno, O. M. (2023). RADAM: texture recognition through randomized aggregated encoding of deep activation maps. Pattern Recognition, No 2023, 109802-1-109802-13 + supplementary materials. doi:10.1016/j.patcog.2023.109802
    • NLM

      Scabini LF dos S, Zielinski KMC, Ribas LC, Gonçalves WN, Baets BD, Bruno OM. RADAM: texture recognition through randomized aggregated encoding of deep activation maps [Internet]. Pattern Recognition. 2023 ; No 2023 109802-1-109802-13 + supplementary materials.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.patcog.2023.109802
    • Vancouver

      Scabini LF dos S, Zielinski KMC, Ribas LC, Gonçalves WN, Baets BD, Bruno OM. RADAM: texture recognition through randomized aggregated encoding of deep activation maps [Internet]. Pattern Recognition. 2023 ; No 2023 109802-1-109802-13 + supplementary materials.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.patcog.2023.109802
  • Fonte: Physica A. Unidades: IFSC, ICMC

    Assuntos: REDES NEURAIS, RECONHECIMENTO DE PADRÕES, APRENDIZAGEM PROFUNDA, REDES COMPLEXAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NEIVA, Mariane Barros e BRUNO, Odemir Martinez. Exploring ordered patterns in the adjacency matrix for improving machine learning on complex networks. Physica A, v. 626, p. 129086-1-129086-11, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.physa.2023.129086. Acesso em: 04 nov. 2024.
    • APA

      Neiva, M. B., & Bruno, O. M. (2023). Exploring ordered patterns in the adjacency matrix for improving machine learning on complex networks. Physica A, 626, 129086-1-129086-11. doi:10.1016/j.physa.2023.129086
    • NLM

      Neiva MB, Bruno OM. Exploring ordered patterns in the adjacency matrix for improving machine learning on complex networks [Internet]. Physica A. 2023 ; 626 129086-1-129086-11.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.physa.2023.129086
    • Vancouver

      Neiva MB, Bruno OM. Exploring ordered patterns in the adjacency matrix for improving machine learning on complex networks [Internet]. Physica A. 2023 ; 626 129086-1-129086-11.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.physa.2023.129086
  • Fonte: Information Sciences. Unidades: IFSC, ICMC

    Assuntos: REDES COMPLEXAS, GEOMETRIA E MODELAGEM COMPUTACIONAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Bárbara Côrtes e et al. Text characterization based on recurrence networks. Information Sciences, v. 641, p. 119124-1-119124-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2023.119124. Acesso em: 04 nov. 2024.
    • APA

      Souza, B. C. e, Silva, F. N., Arruda, H. F. de, Silva, G. D. da, Costa, L. da F., & Amancio, D. R. (2023). Text characterization based on recurrence networks. Information Sciences, 641, 119124-1-119124-15. doi:10.1016/j.ins.2023.119124
    • NLM

      Souza BC e, Silva FN, Arruda HF de, Silva GD da, Costa L da F, Amancio DR. Text characterization based on recurrence networks [Internet]. Information Sciences. 2023 ; 641 119124-1-119124-15.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.ins.2023.119124
    • Vancouver

      Souza BC e, Silva FN, Arruda HF de, Silva GD da, Costa L da F, Amancio DR. Text characterization based on recurrence networks [Internet]. Information Sciences. 2023 ; 641 119124-1-119124-15.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.ins.2023.119124
  • Fonte: Journal of Physics : Complexity. Unidades: ICMC, IFSC, IME

    Assuntos: REDES COMPLEXAS, PROCESSAMENTO DE LINGUAGEM NATURAL

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENATTI, Alexandre et al. Quantifying the hierarchical adherence of modular documents. Journal of Physics : Complexity, v. 4, n. 4, p. 045008-01-045008-18, 2023Tradução . . Disponível em: https://doi.org/10.1088/2632-072X/ad0a9b. Acesso em: 04 nov. 2024.
    • APA

      Benatti, A., Brito, A. C. M., Amancio, D. R., & Costa, L. da F. (2023). Quantifying the hierarchical adherence of modular documents. Journal of Physics : Complexity, 4( 4), 045008-01-045008-18. doi:10.1088/2632-072X/ad0a9b
    • NLM

      Benatti A, Brito ACM, Amancio DR, Costa L da F. Quantifying the hierarchical adherence of modular documents [Internet]. Journal of Physics : Complexity. 2023 ; 4( 4): 045008-01-045008-18.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/ad0a9b
    • Vancouver

      Benatti A, Brito ACM, Amancio DR, Costa L da F. Quantifying the hierarchical adherence of modular documents [Internet]. Journal of Physics : Complexity. 2023 ; 4( 4): 045008-01-045008-18.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/ad0a9b
  • Fonte: European Physical Journal B. Unidades: IFSC, IEA

    Assuntos: REDES COMPLEXAS, CONHECIMENTO, GEOMETRIA E MODELAGEM COMPUTACIONAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOKUDA, Eric Keiji e LAMBIOTTE, Renaud e COSTA, Luciano da Fontoura. Cross-relation characterization of knowledge networks. European Physical Journal B, v. No 2023, n. 11, p. 144-1-144-19, 2023Tradução . . Disponível em: https://doi.org/10.1140/epjb/s10051-023-00608-w. Acesso em: 04 nov. 2024.
    • APA

      Tokuda, E. K., Lambiotte, R., & Costa, L. da F. (2023). Cross-relation characterization of knowledge networks. European Physical Journal B, No 2023( 11), 144-1-144-19. doi:10.1140/epjb/s10051-023-00608-w
    • NLM

      Tokuda EK, Lambiotte R, Costa L da F. Cross-relation characterization of knowledge networks [Internet]. European Physical Journal B. 2023 ; No 2023( 11): 144-1-144-19.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1140/epjb/s10051-023-00608-w
    • Vancouver

      Tokuda EK, Lambiotte R, Costa L da F. Cross-relation characterization of knowledge networks [Internet]. European Physical Journal B. 2023 ; No 2023( 11): 144-1-144-19.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1140/epjb/s10051-023-00608-w
  • Fonte: Journal of Neural Engineering. Unidades: ICMC, IFSC

    Assuntos: TECNOLOGIAS DA SAÚDE, APRENDIZADO COMPUTACIONAL, ESQUIZOFRENIA, REDES COMPLEXAS, RECONHECIMENTO DE IMAGEM, DIAGNÓSTICO POR COMPUTADOR, CÉREBRO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Caroline Lourenço et al. Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia. Journal of Neural Engineering, v. 20, n. 5, p. 056025-1-056025-28, 2023Tradução . . Disponível em: https://doi.org/10.1088/1741-2552/acf734. Acesso em: 04 nov. 2024.
    • APA

      Alves, C. L., Oliveira, T. G. L. de, Porto, J. A. M., Aguiar, P. M. de C., Sena, E. P. de, Rodrigues, F. A., et al. (2023). Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia. Journal of Neural Engineering, 20( 5), 056025-1-056025-28. doi:10.1088/1741-2552/acf734
    • NLM

      Alves CL, Oliveira TGL de, Porto JAM, Aguiar PM de C, Sena EP de, Rodrigues FA, Pineda AM, Thielemann C. Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia [Internet]. Journal of Neural Engineering. 2023 ; 20( 5): 056025-1-056025-28.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/1741-2552/acf734
    • Vancouver

      Alves CL, Oliveira TGL de, Porto JAM, Aguiar PM de C, Sena EP de, Rodrigues FA, Pineda AM, Thielemann C. Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia [Internet]. Journal of Neural Engineering. 2023 ; 20( 5): 056025-1-056025-28.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/1741-2552/acf734
  • Fonte: Epidemics. Unidades: ICMC, IFSC

    Assuntos: MOBILIDADE URBANA, MODELAGEM DE EPIDEMIA, COMPORTAMENTO, REDES COMPLEXAS, SURTOS DE DOENÇAS, SAÚDE PÚBLICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Paulo Cesar Ventura da et al. Modeling the effects of social distancing on the large-scale spreading of diseases. Epidemics, v. 38, p. 100544-1-100544-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.epidem.2022.100544. Acesso em: 04 nov. 2024.
    • APA

      Silva, P. C. V. da, Aleta, A., Rodrigues, F. A., & Moreno, Y. (2022). Modeling the effects of social distancing on the large-scale spreading of diseases. Epidemics, 38, 100544-1-100544-13. doi:10.1016/j.epidem.2022.100544
    • NLM

      Silva PCV da, Aleta A, Rodrigues FA, Moreno Y. Modeling the effects of social distancing on the large-scale spreading of diseases [Internet]. Epidemics. 2022 ; 38 100544-1-100544-13.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.epidem.2022.100544
    • Vancouver

      Silva PCV da, Aleta A, Rodrigues FA, Moreno Y. Modeling the effects of social distancing on the large-scale spreading of diseases [Internet]. Epidemics. 2022 ; 38 100544-1-100544-13.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.epidem.2022.100544
  • Fonte: Physica A. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, CLUSTERS, MODELAGEM DE DADOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOKUDA, Eric Keiji e COMIN, Cesar Henrique e COSTA, Luciano da Fontoura. Revisiting agglomerative clustering. Physica A, v. 585, n. Ja 2022, p. 126433-1-126433-17, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.physa.2021.126433. Acesso em: 04 nov. 2024.
    • APA

      Tokuda, E. K., Comin, C. H., & Costa, L. da F. (2022). Revisiting agglomerative clustering. Physica A, 585( Ja 2022), 126433-1-126433-17. doi:10.1016/j.physa.2021.126433
    • NLM

      Tokuda EK, Comin CH, Costa L da F. Revisiting agglomerative clustering [Internet]. Physica A. 2022 ; 585( Ja 2022): 126433-1-126433-17.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.physa.2021.126433
    • Vancouver

      Tokuda EK, Comin CH, Costa L da F. Revisiting agglomerative clustering [Internet]. Physica A. 2022 ; 585( Ja 2022): 126433-1-126433-17.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.physa.2021.126433
  • Fonte: Revista Brasileira de Ensino de Física. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, RECONHECIMENTO DE PADRÕES

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Luciano da Fontoura e DOMINGUES, Guilherme Schimidt. Cost-Based approach to complexity: a common denominator?. Revista Brasileira de Ensino de Física, v. 44, p. e20210279-1-e20210279-14, 2022Tradução . . Disponível em: https://doi.org/10.1590/1806-9126-RBEF-2021-0279. Acesso em: 04 nov. 2024.
    • APA

      Costa, L. da F., & Domingues, G. S. (2022). Cost-Based approach to complexity: a common denominator? Revista Brasileira de Ensino de Física, 44, e20210279-1-e20210279-14. doi:10.1590/1806-9126-RBEF-2021-0279
    • NLM

      Costa L da F, Domingues GS. Cost-Based approach to complexity: a common denominator? [Internet]. Revista Brasileira de Ensino de Física. 2022 ; 44 e20210279-1-e20210279-14.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1590/1806-9126-RBEF-2021-0279
    • Vancouver

      Costa L da F, Domingues GS. Cost-Based approach to complexity: a common denominator? [Internet]. Revista Brasileira de Ensino de Física. 2022 ; 44 e20210279-1-e20210279-14.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1590/1806-9126-RBEF-2021-0279
  • Fonte: Applied Soft Computing. Unidades: IFSC, ICMC

    Assuntos: REDES COMPLEXAS, VISÃO COMPUTACIONAL, REDES NEURAIS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBAS, Lucas Correia et al. Learning graph representation with randomized neural network for dynamic texture classification. Applied Soft Computing, v. 114, n. Ja 2022, p. 108035-1-108035-14, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.asoc.2021.108035. Acesso em: 04 nov. 2024.
    • APA

      Ribas, L. C., Sá Júnior, J. J. de M., Manzanera, A., & Bruno, O. M. (2022). Learning graph representation with randomized neural network for dynamic texture classification. Applied Soft Computing, 114( Ja 2022), 108035-1-108035-14. doi:10.1016/j.asoc.2021.108035
    • NLM

      Ribas LC, Sá Júnior JJ de M, Manzanera A, Bruno OM. Learning graph representation with randomized neural network for dynamic texture classification [Internet]. Applied Soft Computing. 2022 ; 114( Ja 2022): 108035-1-108035-14.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.asoc.2021.108035
    • Vancouver

      Ribas LC, Sá Júnior JJ de M, Manzanera A, Bruno OM. Learning graph representation with randomized neural network for dynamic texture classification [Internet]. Applied Soft Computing. 2022 ; 114( Ja 2022): 108035-1-108035-14.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.asoc.2021.108035
  • Fonte: Journal of Physics: Complexity. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, VISÃO COMPUTACIONAL

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Luciano da Fontoura. Autorrelation and cross-relation of graphs and networks. Journal of Physics: Complexity, v. 3, n. 4, p. 045009-1-045009-16, 2022Tradução . . Disponível em: https://doi.org/10.1088/2632-072X/aca57c. Acesso em: 04 nov. 2024.
    • APA

      Costa, L. da F. (2022). Autorrelation and cross-relation of graphs and networks. Journal of Physics: Complexity, 3( 4), 045009-1-045009-16. doi:10.1088/2632-072X/aca57c
    • NLM

      Costa L da F. Autorrelation and cross-relation of graphs and networks [Internet]. Journal of Physics: Complexity. 2022 ; 3( 4): 045009-1-045009-16.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/aca57c
    • Vancouver

      Costa L da F. Autorrelation and cross-relation of graphs and networks [Internet]. Journal of Physics: Complexity. 2022 ; 3( 4): 045009-1-045009-16.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/aca57c
  • Fonte: Information Sciences. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, GEOMETRIA E MODELAGEM COMPUTACIONAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRUDA, Henrique Ferraz de et al. Modelling how social network algorithms can influence opinion polarization. Information Sciences, v. 588, p. 265-278 , 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2021.12.069. Acesso em: 04 nov. 2024.
    • APA

      Arruda, H. F. de, Cardoso, F. M., Arruda, G. F. de, Hernández, A. R., Costa, L. da F., & Moreno, Y. (2022). Modelling how social network algorithms can influence opinion polarization. Information Sciences, 588, 265-278 . doi:10.1016/j.ins.2021.12.069
    • NLM

      Arruda HF de, Cardoso FM, Arruda GF de, Hernández AR, Costa L da F, Moreno Y. Modelling how social network algorithms can influence opinion polarization [Internet]. Information Sciences. 2022 ; 588 265-278 .[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.ins.2021.12.069
    • Vancouver

      Arruda HF de, Cardoso FM, Arruda GF de, Hernández AR, Costa L da F, Moreno Y. Modelling how social network algorithms can influence opinion polarization [Internet]. Information Sciences. 2022 ; 588 265-278 .[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.ins.2021.12.069
  • Fonte: Biomedical Signal Processing and Control. Unidades: IFSC, ICMC

    Assuntos: REDES COMPLEXAS, RECONHECIMENTO DE IMAGEM, TECNOLOGIAS DA SAÚDE, OSTEOARTRITE DO JOELHO

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBAS, Lucas Correia et al. A complex network based approach for knee osteoarthritis detection: data from the Osteoarthritis initiative. Biomedical Signal Processing and Control, v. 222, n. Ja 2022, p. 103133-1-103133-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.bspc.2021.103133. Acesso em: 04 nov. 2024.
    • APA

      Ribas, L. C., Riad, R., Jennane, R., & Bruno, O. M. (2022). A complex network based approach for knee osteoarthritis detection: data from the Osteoarthritis initiative. Biomedical Signal Processing and Control, 222( Ja 2022), 103133-1-103133-10. doi:10.1016/j.bspc.2021.103133
    • NLM

      Ribas LC, Riad R, Jennane R, Bruno OM. A complex network based approach for knee osteoarthritis detection: data from the Osteoarthritis initiative [Internet]. Biomedical Signal Processing and Control. 2022 ; 222( Ja 2022): 103133-1-103133-10.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.bspc.2021.103133
    • Vancouver

      Ribas LC, Riad R, Jennane R, Bruno OM. A complex network based approach for knee osteoarthritis detection: data from the Osteoarthritis initiative [Internet]. Biomedical Signal Processing and Control. 2022 ; 222( Ja 2022): 103133-1-103133-10.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.bspc.2021.103133
  • Fonte: Journal of Physics: Complexity. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, VISÃO COMPUTACIONAL

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Luciano da Fontoura. Coincidence complex networks. Journal of Physics: Complexity, v. 3, n. 1, p. 015012-1-015012-18, 2022Tradução . . Disponível em: https://doi.org/10.1088/2632-072X/ac54c3. Acesso em: 04 nov. 2024.
    • APA

      Costa, L. da F. (2022). Coincidence complex networks. Journal of Physics: Complexity, 3( 1), 015012-1-015012-18. doi:10.1088/2632-072X/ac54c3
    • NLM

      Costa L da F. Coincidence complex networks [Internet]. Journal of Physics: Complexity. 2022 ; 3( 1): 015012-1-015012-18.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/ac54c3
    • Vancouver

      Costa L da F. Coincidence complex networks [Internet]. Journal of Physics: Complexity. 2022 ; 3( 1): 015012-1-015012-18.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/ac54c3
  • Fonte: Livro de Resumos. Nome do evento: Semana Integrada do Instituto de Física de São Carlos - SIFSC. Unidade: IFSC

    Assuntos: GEOMETRIA COMPUTACIONAL, SISTEMAS DINÂMICOS, REDES COMPLEXAS

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISPO JUNIOR, Altamir Gomes e BRUNO, Odemir Martinez. Aplicações de redes complexas e ferramentas de geometria computacional em sistemas dinâmicos. 2022, Anais.. São Carlos: Instituto de Física de São Carlos - IFSC, 2022. Disponível em: https://repositorio.usp.br/directbitstream/3784e868-057b-4c99-b822-9afad095fb20/3121115.pdf. Acesso em: 04 nov. 2024.
    • APA

      Bispo Junior, A. G., & Bruno, O. M. (2022). Aplicações de redes complexas e ferramentas de geometria computacional em sistemas dinâmicos. In Livro de Resumos. São Carlos: Instituto de Física de São Carlos - IFSC. Recuperado de https://repositorio.usp.br/directbitstream/3784e868-057b-4c99-b822-9afad095fb20/3121115.pdf
    • NLM

      Bispo Junior AG, Bruno OM. Aplicações de redes complexas e ferramentas de geometria computacional em sistemas dinâmicos [Internet]. Livro de Resumos. 2022 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/3784e868-057b-4c99-b822-9afad095fb20/3121115.pdf
    • Vancouver

      Bispo Junior AG, Bruno OM. Aplicações de redes complexas e ferramentas de geometria computacional em sistemas dinâmicos [Internet]. Livro de Resumos. 2022 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/3784e868-057b-4c99-b822-9afad095fb20/3121115.pdf
  • Fonte: Proceedings. Nome do evento: International Conference on Image Processing Theory, Tools and Applications - IPTA. Unidade: IFSC

    Assuntos: REDES COMPLEXAS, IMAGEM DIGITAL (ANÁLISE), RECONHECIMENTO DE IMAGEM, RECONHECIMENTO DE PADRÕES, TEXTURA (ANÁLISE), INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZIELINSKI, Kallil M. C. et al. Complex texture features learned by applying randomized neural network on graphs. 2022, Anais.. Piscataway: Institute of Electrical and Electronic Engineers - IEEE, 2022. Disponível em: https://doi.org/10.1109/IPTA54936.2022.9784123. Acesso em: 04 nov. 2024.
    • APA

      Zielinski, K. M. C., Ribas, L. C., Scabini, L., & Bruno, O. M. (2022). Complex texture features learned by applying randomized neural network on graphs. In Proceedings. Piscataway: Institute of Electrical and Electronic Engineers - IEEE. doi:10.1109/IPTA54936.2022.9784123
    • NLM

      Zielinski KMC, Ribas LC, Scabini L, Bruno OM. Complex texture features learned by applying randomized neural network on graphs [Internet]. Proceedings. 2022 ;[citado 2024 nov. 04 ] Available from: https://doi.org/10.1109/IPTA54936.2022.9784123
    • Vancouver

      Zielinski KMC, Ribas LC, Scabini L, Bruno OM. Complex texture features learned by applying randomized neural network on graphs [Internet]. Proceedings. 2022 ;[citado 2024 nov. 04 ] Available from: https://doi.org/10.1109/IPTA54936.2022.9784123

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024