Filtros : "EQUAÇÕES DIFERENCIAIS PARCIAIS" Removidos: "China" "NOGUEIRA, ARIADNE" "ESALQ" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, v. 416, n. Ja 2025, p. 1462-1495, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.10.029. Acesso em: 09 nov. 2024.
    • APA

      Carvalho, A. N. de, Lappicy, P., Moreira, E. M., & Oliveira-Sousa, A. do N. (2025). A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, 416( Ja 2025), 1462-1495. doi:10.1016/j.jde.2024.10.029
    • NLM

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
    • Vancouver

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, v. 30, n. 2, p. 496-508, 2025Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2024098. Acesso em: 09 nov. 2024.
    • APA

      Bezerra, F. D. M., Santos, L. A., Silva, M., & Takaessu Junior, C. R. (2025). Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation. Discrete and Continuous Dynamical Systems : Series B, 30( 2), 496-508. doi:10.3934/dcdsb.2024098
    • NLM

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3934/dcdsb.2024098
    • Vancouver

      Bezerra FDM, Santos LA, Silva M, Takaessu Junior CR. Spectral analysis and exponential stability of a generalized fractional Moore-Gibson-Thompson equation [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2025 ; 30( 2): 496-508.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3934/dcdsb.2024098
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, OPERADORES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia e CELY, Liliana. Ground states for coupled NLS equations with double power nonlinearities. Nonlinear Differential Equations and Applications NoDEA, v. 31, n. artigo 74, p. 1-29, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00030-024-00956-1. Acesso em: 09 nov. 2024.
    • APA

      Goloshchapova, N., & Cely, L. (2024). Ground states for coupled NLS equations with double power nonlinearities. Nonlinear Differential Equations and Applications NoDEA, 31( artigo 74), 1-29. doi:10.1007/s00030-024-00956-1
    • NLM

      Goloshchapova N, Cely L. Ground states for coupled NLS equations with double power nonlinearities [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2024 ; 31( artigo 74): 1-29.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00030-024-00956-1
    • Vancouver

      Goloshchapova N, Cely L. Ground states for coupled NLS equations with double power nonlinearities [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2024 ; 31( artigo 74): 1-29.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00030-024-00956-1
  • Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Patricia Neves de. Problemas elípticos semilineares em domínios finos definidos por funções não negativas. 2024. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072024-171957/. Acesso em: 09 nov. 2024.
    • APA

      Araujo, P. N. de. (2024). Problemas elípticos semilineares em domínios finos definidos por funções não negativas (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072024-171957/
    • NLM

      Araujo PN de. Problemas elípticos semilineares em domínios finos definidos por funções não negativas [Internet]. 2024 ;[citado 2024 nov. 09 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072024-171957/
    • Vancouver

      Araujo PN de. Problemas elípticos semilineares em domínios finos definidos por funções não negativas [Internet]. 2024 ;[citado 2024 nov. 09 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-29072024-171957/
  • Source: Journal of the Institute of Mathematics of Jussieu. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, GRUPOS DE LIE, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Gabriel Cueva Candido Soares de e FERRA, Igor Ambo e RAGOGNETTE, Luis Fernando. Global hypoellipticity of sums of squares on compact manifolds. Journal of the Institute of Mathematics of Jussieu, 2024Tradução . . Disponível em: https://doi.org/10.1017/S147474802300049X. Acesso em: 09 nov. 2024.
    • APA

      Araújo, G. C. C. S. de, Ferra, I. A., & Ragognette, L. F. (2024). Global hypoellipticity of sums of squares on compact manifolds. Journal of the Institute of Mathematics of Jussieu. doi:10.1017/S147474802300049X
    • NLM

      Araújo GCCS de, Ferra IA, Ragognette LF. Global hypoellipticity of sums of squares on compact manifolds [Internet]. Journal of the Institute of Mathematics of Jussieu. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/S147474802300049X
    • Vancouver

      Araújo GCCS de, Ferra IA, Ragognette LF. Global hypoellipticity of sums of squares on compact manifolds [Internet]. Journal of the Institute of Mathematics of Jussieu. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/S147474802300049X
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NARIYOSHI, João Fernando da Cunha. On the existence of source-solutions to the multi-dimensional Burgers equation. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 09 nov. 2024.
    • APA

      Nariyoshi, J. F. da C. (2024). On the existence of source-solutions to the multi-dimensional Burgers equation. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Nariyoshi JF da C. On the existence of source-solutions to the multi-dimensional Burgers equation [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Nariyoshi JF da C. On the existence of source-solutions to the multi-dimensional Burgers equation [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e FELTRIN, Guglielmo. Bifurcation results for a class of second order equations. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 09 nov. 2024.
    • APA

      Benevieri, P., & Feltrin, G. (2024). Bifurcation results for a class of second order equations. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Benevieri P, Feltrin G. Bifurcation results for a class of second order equations [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Benevieri P, Feltrin G. Bifurcation results for a class of second order equations [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Mathematische Nachrichten. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDARO, Paulo Domingos e FÜRDÖS, Stefan. The Metivier inequality and ultradifferentiable hypoellipticity. Mathematische Nachrichten, v. 297, n. 7. p. 2517-2531, 2024Tradução . . Disponível em: https://doi.org/10.1002/mana.202300147. Acesso em: 09 nov. 2024.
    • APA

      Cordaro, P. D., & Fürdös, S. (2024). The Metivier inequality and ultradifferentiable hypoellipticity. Mathematische Nachrichten, 297( 7. p. 2517-2531). doi:10.1002/mana.202300147
    • NLM

      Cordaro PD, Fürdös S. The Metivier inequality and ultradifferentiable hypoellipticity [Internet]. Mathematische Nachrichten. 2024 ; 297( 7. p. 2517-2531):[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/mana.202300147
    • Vancouver

      Cordaro PD, Fürdös S. The Metivier inequality and ultradifferentiable hypoellipticity [Internet]. Mathematische Nachrichten. 2024 ; 297( 7. p. 2517-2531):[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/mana.202300147
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 09 nov. 2024.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAMIAN, Heydy Melchora Santos e SICILIANO, Gaetano. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, v. 63, n. artigo 55, p. 1-23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00526-024-02775-9. Acesso em: 09 nov. 2024.
    • APA

      Damian, H. M. S., & Siciliano, G. (2024). Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, 63( artigo 55), 1-23. doi:10.1007/s00526-024-02775-9
    • NLM

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
    • Vancouver

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, CÁLCULO DE VARIAÇÕES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos et al. Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, v. 56, n. 6, p. 7136-7169, 2024Tradução . . Disponível em: https://doi.org/10.1137/23M161553X. Acesso em: 09 nov. 2024.
    • APA

      Andrade, P. D. S., Moreira dos Santos, E., Santos, M., & Tavares, H. (2024). Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, 56( 6), 7136-7169. doi:10.1137/23M161553X
    • NLM

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1137/23M161553X
    • Vancouver

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1137/23M161553X
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES POSITIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel e BEZERRA, Flank David Morais e NASCIMENTO, Marcelo José Dias. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications. Mathematische Nachrichten, v. 297, n. 9, p. 3288-3312, 2024Tradução . . Disponível em: https://doi.org/10.1002/mana.202300318. Acesso em: 09 nov. 2024.
    • APA

      Belluzi, M., Bezerra, F. D. M., & Nascimento, M. J. D. (2024). On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications. Mathematische Nachrichten, 297( 9), 3288-3312. doi:10.1002/mana.202300318
    • NLM

      Belluzi M, Bezerra FDM, Nascimento MJD. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications [Internet]. Mathematische Nachrichten. 2024 ; 297( 9): 3288-3312.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/mana.202300318
    • Vancouver

      Belluzi M, Bezerra FDM, Nascimento MJD. On coupled semilinear evolution systems: techniques on fractional powers of 4 x 4 matrices and applications [Internet]. Mathematische Nachrichten. 2024 ; 297( 9): 3288-3312.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/mana.202300318
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Disponível em 2025-08-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 09 nov. 2024.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2024). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAMIAN, Heydy Melchora Santos e SICILIANO, Gaetano. Critical Schrödinger-Bopp-Podolsky system: solution in the semiclassical limit. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 09 nov. 2024.
    • APA

      Damian, H. M. S., & Siciliano, G. (2024). Critical Schrödinger-Bopp-Podolsky system: solution in the semiclassical limit. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Damian HMS, Siciliano G. Critical Schrödinger-Bopp-Podolsky system: solution in the semiclassical limit [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Damian HMS, Siciliano G. Critical Schrödinger-Bopp-Podolsky system: solution in the semiclassical limit [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, OPERADORES LINEARES

    Disponível em 2025-06-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, v. 24, n. 2, p. 1-37, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-00961-y. Acesso em: 09 nov. 2024.
    • APA

      Belluzi, M. (2024). Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, 24( 2), 1-37. doi:10.1007/s00028-024-00961-y
    • NLM

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
    • Vancouver

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 09 nov. 2024.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE HARMÔNICA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAGUNA, Renato Andrielli e ZANI, Sérgio Luís. Some singular solutions on the Möbius band. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 09 nov. 2024.
    • APA

      Laguna, R. A., & Zani, S. L. (2024). Some singular solutions on the Möbius band. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Laguna RA, Zani SL. Some singular solutions on the Möbius band [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Laguna RA, Zani SL. Some singular solutions on the Möbius band [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Makson et al. Regularity for an optimal partition problem with volume constraint. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 09 nov. 2024.
    • APA

      Santos, M., Andrade, P. D. S., Moreira dos Santos, E., & Tavares, H. (2024). Regularity for an optimal partition problem with volume constraint. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Santos M, Andrade PDS, Moreira dos Santos E, Tavares H. Regularity for an optimal partition problem with volume constraint [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Santos M, Andrade PDS, Moreira dos Santos E, Tavares H. Regularity for an optimal partition problem with volume constraint [Internet]. Abstracts. 2024 ;[citado 2024 nov. 09 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Journal of Evolution Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e PIRES, Leonardo. Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain. Journal of Evolution Equations, v. 24, n. 5, p. 1-41, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00028-023-00934-7. Acesso em: 09 nov. 2024.
    • APA

      Pereira, M. C., & Pires, L. (2024). Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain. Journal of Evolution Equations, 24( 5), 1-41. doi:10.1007/s00028-023-00934-7
    • NLM

      Pereira MC, Pires L. Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain [Internet]. Journal of Evolution Equations. 2024 ; 24( 5): 1-41.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00028-023-00934-7
    • Vancouver

      Pereira MC, Pires L. Rate of convergence for reaction–diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain [Internet]. Journal of Evolution Equations. 2024 ; 24( 5): 1-41.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00028-023-00934-7
  • Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS, MÉTODOS VARIACIONAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Gustavo de Paula. The nonlinear Schrödinger equation: electrostatic self-interaction and interplay with geometric contexts. 2024. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12082024-114527/. Acesso em: 09 nov. 2024.
    • APA

      Ramos, G. de P. (2024). The nonlinear Schrödinger equation: electrostatic self-interaction and interplay with geometric contexts (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12082024-114527/
    • NLM

      Ramos G de P. The nonlinear Schrödinger equation: electrostatic self-interaction and interplay with geometric contexts [Internet]. 2024 ;[citado 2024 nov. 09 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12082024-114527/
    • Vancouver

      Ramos G de P. The nonlinear Schrödinger equation: electrostatic self-interaction and interplay with geometric contexts [Internet]. 2024 ;[citado 2024 nov. 09 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-12082024-114527/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024