Rate of convergence for reaction-diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain (2024)
- Authors:
- Autor USP: PEREIRA, MARCONE CORRÊA - IME
- Unidade: IME
- DOI: 10.1007/s00028-023-00934-7
- Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS; ANÁLISE GLOBAL
- Keywords: Reaction–diffusion equations; Global attractors; Rate of convergence of attractors; Domain perturbations
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Evolution Equations
- ISSN: 1424-3199
- Volume/Número/Paginação/Ano: v. 24, n. 5, p. 1-41, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PEREIRA, Marcone Corrêa e PIRES, Leonardo. Rate of convergence for reaction-diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain. Journal of Evolution Equations, v. 24, n. 5, p. 1-41, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00028-023-00934-7. Acesso em: 23 jan. 2026. -
APA
Pereira, M. C., & Pires, L. (2024). Rate of convergence for reaction-diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain. Journal of Evolution Equations, 24( 5), 1-41. doi:10.1007/s00028-023-00934-7 -
NLM
Pereira MC, Pires L. Rate of convergence for reaction-diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain [Internet]. Journal of Evolution Equations. 2024 ; 24( 5): 1-41.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s00028-023-00934-7 -
Vancouver
Pereira MC, Pires L. Rate of convergence for reaction-diffusion equations with nonlinear Neumann boundary conditions and C¹ variation of the domain [Internet]. Journal of Evolution Equations. 2024 ; 24( 5): 1-41.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s00028-023-00934-7 - Remarks on the p-Laplacian on thin domains
- Elliptic semilinear problems in thin domains defined by non-negative functions
- Generic simplicity of the eigenvalues for a supported plate equation
- Remarks on the spectrum of a nonlocal Dirichlet problem
- Generic hyperbolicity of stationary solutions for a reaction–diffusion system
- Homogenization in a thin domain with an oscillatory boundary
- Nonlocal evolution equations in perforated domains
- A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions
- Nonlocal problems in thin domains
- Homogenization of the p-laplacian in thin domains: the unfolding
Informações sobre o DOI: 10.1007/s00028-023-00934-7 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3175371 - Rate of converg... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
