Filtros : "BIOINFORMÁTICA" "IME" Removidos: "Israel" "HUMES JUNIOR, CARLOS" "PEREIRA, CARLOS ALBERTO DE BRAGANCA" "FINEP 1266/130" "Coloquio de Iniciacao Cientifica" Limpar

Filtros



Refine with date range


  • Source: Ambient intelligence in health care : proceedings. Conference titles: International Conference on Ambient Intelligence in Health Care - ICAIHC. Unidade: IME

    Subjects: REDES COMPLEXAS, ENTROPIA, COVID-19, ANÁLISE SEQUENCIAL, BIOINFORMÁTICA, RECONHECIMENTO DE PADRÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIMENTA-ZANON, Matheus H. et al. Biological sequence analysis using complex networks and entropy maximization: a case study in SARS-CoV-2. 2023, Anais.. Heidelberg: Springer, 2023. Disponível em: https://doi.org/10.1007/978-981-19-6068-0_44. Acesso em: 16 nov. 2024.
    • APA

      Pimenta-Zanon, M. H., de Souza, V. A., Hashimoto, R. F., & Lopes, F. M. (2023). Biological sequence analysis using complex networks and entropy maximization: a case study in SARS-CoV-2. In Ambient intelligence in health care : proceedings. Heidelberg: Springer. doi:10.1007/978-981-19-6068-0_44
    • NLM

      Pimenta-Zanon MH, de Souza VA, Hashimoto RF, Lopes FM. Biological sequence analysis using complex networks and entropy maximization: a case study in SARS-CoV-2 [Internet]. Ambient intelligence in health care : proceedings. 2023 ;[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-981-19-6068-0_44
    • Vancouver

      Pimenta-Zanon MH, de Souza VA, Hashimoto RF, Lopes FM. Biological sequence analysis using complex networks and entropy maximization: a case study in SARS-CoV-2 [Internet]. Ambient intelligence in health care : proceedings. 2023 ;[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-981-19-6068-0_44
  • Conference titles: Brazilian Symposium on Bioinformatics - BSB. Unidades: IME, BIOINFORMÁTICA

    Subjects: BIOINFORMÁTICA, REDES COMPLEXAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VILLELA, Victor Chavauty e LIRA, Eduardo Silva e FUJITA, André. Spectrum-based statistical methods for directed graphs with applications in biological data. 2023, Anais.. Cham: Springer, 2023. Disponível em: https://doi.org/10.1007/978-3-031-42715-2_5. Acesso em: 16 nov. 2024.
    • APA

      Villela, V. C., Lira, E. S., & Fujita, A. (2023). Spectrum-based statistical methods for directed graphs with applications in biological data. In . Cham: Springer. doi:10.1007/978-3-031-42715-2_5
    • NLM

      Villela VC, Lira ES, Fujita A. Spectrum-based statistical methods for directed graphs with applications in biological data [Internet]. 2023 ;[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-3-031-42715-2_5
    • Vancouver

      Villela VC, Lira ES, Fujita A. Spectrum-based statistical methods for directed graphs with applications in biological data [Internet]. 2023 ;[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-3-031-42715-2_5
  • Source: Journal of Bioinformatics and Computational Biology. Unidade: IME

    Subjects: BIOINFORMÁTICA, NEOPLASIAS PULMONARES, MODELOS PARA PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RELVAS, Carlos E. M. et al. A model-based clustering algorithm with covariates adjustment and its application to lung cancer stratification. Journal of Bioinformatics and Computational Biology, v. 21, n. artigo 2350019, p. 1-26, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219720023500191. Acesso em: 16 nov. 2024.
    • APA

      Relvas, C. E. M., Nakata, A., Chen, G., Beer, D. G., Gotoh, N., & Fujita, A. (2023). A model-based clustering algorithm with covariates adjustment and its application to lung cancer stratification. Journal of Bioinformatics and Computational Biology, 21( artigo 2350019), 1-26. doi:10.1142/S0219720023500191
    • NLM

      Relvas CEM, Nakata A, Chen G, Beer DG, Gotoh N, Fujita A. A model-based clustering algorithm with covariates adjustment and its application to lung cancer stratification [Internet]. Journal of Bioinformatics and Computational Biology. 2023 ; 21( artigo 2350019): 1-26.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1142/S0219720023500191
    • Vancouver

      Relvas CEM, Nakata A, Chen G, Beer DG, Gotoh N, Fujita A. A model-based clustering algorithm with covariates adjustment and its application to lung cancer stratification [Internet]. Journal of Bioinformatics and Computational Biology. 2023 ; 21( artigo 2350019): 1-26.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1142/S0219720023500191
  • Source: IEEE/ACM Transactions on Computational Biology and Bioinformatics. Unidade: IME

    Subjects: BIOINFORMÁTICA, ESTATÍSTICA APLICADA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHUNIKHINA, Evgenia et al. The C-SHIFT algorithm for normalizing covariances. IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 20, n. 1, p. 720-730, 2023Tradução . . Disponível em: https://doi.org/10.1109/TCBB.2022.3151840. Acesso em: 16 nov. 2024.
    • APA

      Chunikhina, E., Logan, P., Kovchegov, Y., Iambartsev, A., Mondal, D., & Morgun, A. (2023). The C-SHIFT algorithm for normalizing covariances. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20( 1), 720-730. doi:10.1109/TCBB.2022.3151840
    • NLM

      Chunikhina E, Logan P, Kovchegov Y, Iambartsev A, Mondal D, Morgun A. The C-SHIFT algorithm for normalizing covariances [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2023 ; 20( 1): 720-730.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1109/TCBB.2022.3151840
    • Vancouver

      Chunikhina E, Logan P, Kovchegov Y, Iambartsev A, Mondal D, Morgun A. The C-SHIFT algorithm for normalizing covariances [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2023 ; 20( 1): 720-730.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1109/TCBB.2022.3151840
  • Source: American Journal of Psychiatry. Unidades: IME, FM

    Subjects: BIOINFORMÁTICA, TRANSTORNO DO DEFICIT DE ATENÇÃO COM HIPERATIVIDADE, TRANSTORNO AUTÍSTICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARHAT, Luis C. et al. Networks of neurodevelopmental traits, socioenvironmental factors, emotional dysregulation in childhood, and depressive symptoms across development in two U.K. cohorts. American Journal of Psychiatry, v. 180, n. 10, p. 755-765, 2023Tradução . . Disponível em: https://doi.org/10.1176/appi.ajp.20220868. Acesso em: 16 nov. 2024.
    • APA

      Farhat, L. C., Blakey, R., Davey Smith, G., Fujita, A., Shephard, E., Stergiakouli, E., et al. (2023). Networks of neurodevelopmental traits, socioenvironmental factors, emotional dysregulation in childhood, and depressive symptoms across development in two U.K. cohorts. American Journal of Psychiatry, 180( 10), 755-765. doi:10.1176/appi.ajp.20220868
    • NLM

      Farhat LC, Blakey R, Davey Smith G, Fujita A, Shephard E, Stergiakouli E, Eley TC, Thapar A, Polanczyk GV. Networks of neurodevelopmental traits, socioenvironmental factors, emotional dysregulation in childhood, and depressive symptoms across development in two U.K. cohorts [Internet]. American Journal of Psychiatry. 2023 ; 180( 10): 755-765.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1176/appi.ajp.20220868
    • Vancouver

      Farhat LC, Blakey R, Davey Smith G, Fujita A, Shephard E, Stergiakouli E, Eley TC, Thapar A, Polanczyk GV. Networks of neurodevelopmental traits, socioenvironmental factors, emotional dysregulation in childhood, and depressive symptoms across development in two U.K. cohorts [Internet]. American Journal of Psychiatry. 2023 ; 180( 10): 755-765.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1176/appi.ajp.20220868
  • Source: Bioinformatics. Unidades: IB, IME

    Assunto: BIOINFORMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRATES, Lucas de Oliveira et al. Population-based change-point detection for the identification of homozygosity islands. Bioinformatics, v. 39, n. 4, p. 1-8, 2023Tradução . . Disponível em: https://doi.org/10.1093/bioinformatics/btad170. Acesso em: 16 nov. 2024.
    • APA

      Prates, L. de O., Lemes, R. B., Hünemeier, T., & Leonardi, F. G. (2023). Population-based change-point detection for the identification of homozygosity islands. Bioinformatics, 39( 4), 1-8. doi:10.1093/bioinformatics/btad170
    • NLM

      Prates L de O, Lemes RB, Hünemeier T, Leonardi FG. Population-based change-point detection for the identification of homozygosity islands [Internet]. Bioinformatics. 2023 ; 39( 4): 1-8.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/bioinformatics/btad170
    • Vancouver

      Prates L de O, Lemes RB, Hünemeier T, Leonardi FG. Population-based change-point detection for the identification of homozygosity islands [Internet]. Bioinformatics. 2023 ; 39( 4): 1-8.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/bioinformatics/btad170
  • Source: Clinical Epigenetics. Unidades: IME, FCF, IQ

    Subjects: GENOMAS, MELANOMA, BIOINFORMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIUS, Flávia Eichemberger et al. Genome-wide promoter methylation profling in a cellular model of melanoma progression reveals markers of malignancy and metastasis that predict melanoma survival. Clinical Epigenetics, v. 14, n. artigo 68, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.1186/s13148-022-01291-x. Acesso em: 16 nov. 2024.
    • APA

      Rius, F. E., Papaiz, D. D. 'A., Azevedo, H., Ayub, A. L. P., Pessoa, D. de O., Oliveira, T. F. de, et al. (2022). Genome-wide promoter methylation profling in a cellular model of melanoma progression reveals markers of malignancy and metastasis that predict melanoma survival. Clinical Epigenetics, 14( artigo 68), 1-20. doi:10.1186/s13148-022-01291-x
    • NLM

      Rius FE, Papaiz DD'A, Azevedo H, Ayub ALP, Pessoa D de O, Oliveira TF de, Loureiro AP de M, Andrade F, Fujita A, Reis EM, Mason CE, Jasiulionis MG. Genome-wide promoter methylation profling in a cellular model of melanoma progression reveals markers of malignancy and metastasis that predict melanoma survival [Internet]. Clinical Epigenetics. 2022 ; 14( artigo 68): 1-20.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1186/s13148-022-01291-x
    • Vancouver

      Rius FE, Papaiz DD'A, Azevedo H, Ayub ALP, Pessoa D de O, Oliveira TF de, Loureiro AP de M, Andrade F, Fujita A, Reis EM, Mason CE, Jasiulionis MG. Genome-wide promoter methylation profling in a cellular model of melanoma progression reveals markers of malignancy and metastasis that predict melanoma survival [Internet]. Clinical Epigenetics. 2022 ; 14( artigo 68): 1-20.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1186/s13148-022-01291-x
  • Source: Scientific Reports. Unidades: IME, BIOINFORMÁTICA

    Subjects: GEOMETRIA E MODELAGEM COMPUTACIONAL, BIOINFORMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAWASHIMA, IrinaYuri et al. SARS‑CoV‑2 host prediction based on virus‑host genetic features. Scientific Reports, v. 12, n. artigo 4576, p. 1-9, 2022Tradução . . Disponível em: https://doi.org/10.1038/s41598-022-08350-6. Acesso em: 16 nov. 2024.
    • APA

      Kawashima, I. Y., Lopez, M. C. N., Cunha, M. dos P., & Hashimoto, R. F. (2022). SARS‑CoV‑2 host prediction based on virus‑host genetic features. Scientific Reports, 12( artigo 4576), 1-9. doi:10.1038/s41598-022-08350-6
    • NLM

      Kawashima IY, Lopez MCN, Cunha M dos P, Hashimoto RF. SARS‑CoV‑2 host prediction based on virus‑host genetic features [Internet]. Scientific Reports. 2022 ; 12( artigo 4576): 1-9.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1038/s41598-022-08350-6
    • Vancouver

      Kawashima IY, Lopez MCN, Cunha M dos P, Hashimoto RF. SARS‑CoV‑2 host prediction based on virus‑host genetic features [Internet]. Scientific Reports. 2022 ; 12( artigo 4576): 1-9.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1038/s41598-022-08350-6
  • Source: Research Square. Unidade: IME

    Assunto: BIOINFORMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARFÁN, Carlos Enrique Paucar et al. Heart rate variability predicts the subject-driven cognitive states. Research Square, 2022Tradução . . Disponível em: https://doi.org/10.21203/rs.3.rs-1957712/v1. Acesso em: 16 nov. 2024.
    • APA

      Farfán, C. E. P., Bruel, P., Goldman, A., Takahashi, D. Y., & Fujita, A. (2022). Heart rate variability predicts the subject-driven cognitive states. Research Square. doi:10.21203/rs.3.rs-1957712/v1
    • NLM

      Farfán CEP, Bruel P, Goldman A, Takahashi DY, Fujita A. Heart rate variability predicts the subject-driven cognitive states [Internet]. Research Square. 2022 ;[citado 2024 nov. 16 ] Available from: https://doi.org/10.21203/rs.3.rs-1957712/v1
    • Vancouver

      Farfán CEP, Bruel P, Goldman A, Takahashi DY, Fujita A. Heart rate variability predicts the subject-driven cognitive states [Internet]. Research Square. 2022 ;[citado 2024 nov. 16 ] Available from: https://doi.org/10.21203/rs.3.rs-1957712/v1
  • Source: Biology. Unidade: IME

    Subjects: GEOMETRIA E MODELAGEM COMPUTACIONAL, BIOINFORMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUPTA, Shantanu et al. A Boolean model of the proliferative role of the lncRNA XIST in non-small cell lung cancer cells. Biology, v. 11, n. artigo 480, p. 1-14, 2022Tradução . . Disponível em: https://doi.org/10.3390/biology11040480. Acesso em: 16 nov. 2024.
    • APA

      Gupta, S., Silveira, D. A., Hashimoto, R. F., & Mombach, J. C. M. (2022). A Boolean model of the proliferative role of the lncRNA XIST in non-small cell lung cancer cells. Biology, 11( artigo 480), 1-14. doi:10.3390/biology11040480
    • NLM

      Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean model of the proliferative role of the lncRNA XIST in non-small cell lung cancer cells [Internet]. Biology. 2022 ; 11( artigo 480): 1-14.[citado 2024 nov. 16 ] Available from: https://doi.org/10.3390/biology11040480
    • Vancouver

      Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean model of the proliferative role of the lncRNA XIST in non-small cell lung cancer cells [Internet]. Biology. 2022 ; 11( artigo 480): 1-14.[citado 2024 nov. 16 ] Available from: https://doi.org/10.3390/biology11040480
  • Source: Applied Sciences. Unidades: EP, IME, FM

    Subjects: DIABETES MELLITUS, DIABETES MELLITUS NÃO INSULINO-DEPENDENTE, BIOINFORMÁTICA, PREDIÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, João Paulo Aragão et al. A multi-agent approach used to predict long-term glucose oscillation in individuals with type 1 diabetes. Applied Sciences, v. 12, n. 19O, 2022Tradução . . Disponível em: https://doi.org/10.3390/app12199641. Acesso em: 16 nov. 2024.
    • APA

      Pereira, J. P. A., Brandão, A. A. F., Bevilacqua, J. da S., & Giannella, M. L. C. C. (2022). A multi-agent approach used to predict long-term glucose oscillation in individuals with type 1 diabetes. Applied Sciences, 12( 19O). doi:10.3390/app12199641
    • NLM

      Pereira JPA, Brandão AAF, Bevilacqua J da S, Giannella MLCC. A multi-agent approach used to predict long-term glucose oscillation in individuals with type 1 diabetes [Internet]. Applied Sciences. 2022 ; 12( 19O):[citado 2024 nov. 16 ] Available from: https://doi.org/10.3390/app12199641
    • Vancouver

      Pereira JPA, Brandão AAF, Bevilacqua J da S, Giannella MLCC. A multi-agent approach used to predict long-term glucose oscillation in individuals with type 1 diabetes [Internet]. Applied Sciences. 2022 ; 12( 19O):[citado 2024 nov. 16 ] Available from: https://doi.org/10.3390/app12199641
  • Source: Frontiers in Genetics. Unidade: IME

    Subjects: BIOINFORMÁTICA, METABOLÔMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARINI, Mariana Galvão et al. Totoro: identifying active reactions during the transient state for metabolic perturbations. Frontiers in Genetics, v. 13, 2022Tradução . . Disponível em: https://doi.org/10.3389/fgene.2022.815476. Acesso em: 16 nov. 2024.
    • APA

      Ferrarini, M. G., Ziska, I., Andrade, R., Julien-Laferrière, A., Duchemin, L., César Júnior, R. M., et al. (2022). Totoro: identifying active reactions during the transient state for metabolic perturbations. Frontiers in Genetics, 13. doi:10.3389/fgene.2022.815476
    • NLM

      Ferrarini MG, Ziska I, Andrade R, Julien-Laferrière A, Duchemin L, César Júnior RM, Mary A, Vinga S, Sagot M-F. Totoro: identifying active reactions during the transient state for metabolic perturbations [Internet]. Frontiers in Genetics. 2022 ; 13[citado 2024 nov. 16 ] Available from: https://doi.org/10.3389/fgene.2022.815476
    • Vancouver

      Ferrarini MG, Ziska I, Andrade R, Julien-Laferrière A, Duchemin L, César Júnior RM, Mary A, Vinga S, Sagot M-F. Totoro: identifying active reactions during the transient state for metabolic perturbations [Internet]. Frontiers in Genetics. 2022 ; 13[citado 2024 nov. 16 ] Available from: https://doi.org/10.3389/fgene.2022.815476
  • Source: Briefings in Bioinformatics. Unidade: IME

    Subjects: BIOINFORMÁTICA, SEQUENCIAMENTO GENÉTICO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NACHTIGALL, Pedro Gabriel e KASHIWABARA, André Yoshiaki e DURHAM, Alan Mitchell. CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts. Briefings in Bioinformatics, v. 22, n. 3, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1093/bib/bbaa045. Acesso em: 16 nov. 2024.
    • APA

      Nachtigall, P. G., Kashiwabara, A. Y., & Durham, A. M. (2021). CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts. Briefings in Bioinformatics, 22( 3), 1-11. doi:10.1093/bib/bbaa045
    • NLM

      Nachtigall PG, Kashiwabara AY, Durham AM. CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts [Internet]. Briefings in Bioinformatics. 2021 ; 22( 3): 1-11.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/bib/bbaa045
    • Vancouver

      Nachtigall PG, Kashiwabara AY, Durham AM. CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts [Internet]. Briefings in Bioinformatics. 2021 ; 22( 3): 1-11.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/bib/bbaa045
  • Source: Plant circular RNAs : methods and protocols. Unidade: IME

    Assunto: BIOINFORMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Liliane Santana et al. Computational analysis of transposable elements and circRNAs in plants. Plant circular RNAs : methods and protocols. Tradução . New York: Humana, 2021. . Disponível em: https://doi.org/10.1007/978-1-0716-1645-1_9. Acesso em: 16 nov. 2024.
    • APA

      Oliveira, L. S., Patera, A. C., Domingues, D. S., Sanches, D. S., Lopes, F. M., Bugatti, P. H., et al. (2021). Computational analysis of transposable elements and circRNAs in plants. In Plant circular RNAs : methods and protocols. New York: Humana. doi:10.1007/978-1-0716-1645-1_9
    • NLM

      Oliveira LS, Patera AC, Domingues DS, Sanches DS, Lopes FM, Bugatti PH, Saito PTM, Maracaja-Coutinho V, Durham AM, Paschoal AR. Computational analysis of transposable elements and circRNAs in plants [Internet]. In: Plant circular RNAs : methods and protocols. New York: Humana; 2021. [citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-1-0716-1645-1_9
    • Vancouver

      Oliveira LS, Patera AC, Domingues DS, Sanches DS, Lopes FM, Bugatti PH, Saito PTM, Maracaja-Coutinho V, Durham AM, Paschoal AR. Computational analysis of transposable elements and circRNAs in plants [Internet]. In: Plant circular RNAs : methods and protocols. New York: Humana; 2021. [citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-1-0716-1645-1_9
  • Source: Briefings in Bioinformatics. Unidades: IQ, IME, BIOINFORMÁTICA

    Subjects: TRANSCRIÇÃO GÊNICA, BIOINFORMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Mauro de Medeiros et al. TSSFinder—fast and accurate ab initio prediction of the core promoter in eukaryotic genomes. Briefings in Bioinformatics, v. 22, n. 6, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.1093/bib/bbab198. Acesso em: 16 nov. 2024.
    • APA

      Oliveira, M. de M., Bonadio, Í., Melo, A. L. de, Souza, G. M., & Durham, A. M. (2021). TSSFinder—fast and accurate ab initio prediction of the core promoter in eukaryotic genomes. Briefings in Bioinformatics, 22( 6), 1-12. doi:10.1093/bib/bbab198
    • NLM

      Oliveira M de M, Bonadio Í, Melo AL de, Souza GM, Durham AM. TSSFinder—fast and accurate ab initio prediction of the core promoter in eukaryotic genomes [Internet]. Briefings in Bioinformatics. 2021 ; 22( 6): 1-12.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/bib/bbab198
    • Vancouver

      Oliveira M de M, Bonadio Í, Melo AL de, Souza GM, Durham AM. TSSFinder—fast and accurate ab initio prediction of the core promoter in eukaryotic genomes [Internet]. Briefings in Bioinformatics. 2021 ; 22( 6): 1-12.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/bib/bbab198
  • Source: BMC Medical Genomics. Unidades: IME, FCF, BIOINFORMÁTICA

    Subjects: DIAGNÓSTICO PRÉ-NATAL, PATERNIDADE, BIOINFORMÁTICA, HAPLOTIPOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WANG, Jaqueline Yu Ting et al. Noninvasive prenatal paternity determination using microhaplotypes: a pilot study. BMC Medical Genomics, v. 13, n. art. 157, p. 1-8, 2020Tradução . . Disponível em: https://doi.org/10.1186/s12920-020-00806-w. Acesso em: 16 nov. 2024.
    • APA

      Wang, J. Y. T., Whittle, M. R., Puga, R. D., Yambartsev, A., Fujita, A., & Nakaya, H. T. I. (2020). Noninvasive prenatal paternity determination using microhaplotypes: a pilot study. BMC Medical Genomics, 13( art. 157), 1-8. doi:10.1186/s12920-020-00806-w
    • NLM

      Wang JYT, Whittle MR, Puga RD, Yambartsev A, Fujita A, Nakaya HTI. Noninvasive prenatal paternity determination using microhaplotypes: a pilot study [Internet]. BMC Medical Genomics. 2020 ; 13( art. 157): 1-8.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1186/s12920-020-00806-w
    • Vancouver

      Wang JYT, Whittle MR, Puga RD, Yambartsev A, Fujita A, Nakaya HTI. Noninvasive prenatal paternity determination using microhaplotypes: a pilot study [Internet]. BMC Medical Genomics. 2020 ; 13( art. 157): 1-8.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1186/s12920-020-00806-w
  • Source: Journal of Complex Networks. Unidades: IME, FM, EEFERP

    Subjects: INFERÊNCIA PARAMÉTRICA, BIOINFORMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, v. 8, n. 2, 2020Tradução . . Disponível em: https://doi.org/10.1093/comnet/cnz028. Acesso em: 16 nov. 2024.
    • APA

      Fujita, A., Lira, E. S., Santos, S. de S., Bando, S. Y., Soares, G. E., & Takahashi, D. Y. (2020). A semi-parametric statistical test to compare complex networks. Journal of Complex Networks, 8( 2). doi:10.1093/comnet/cnz028
    • NLM

      Fujita A, Lira ES, Santos S de S, Bando SY, Soares GE, Takahashi DY. A semi-parametric statistical test to compare complex networks [Internet]. Journal of Complex Networks. 2020 ; 8( 2):[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/comnet/cnz028
    • Vancouver

      Fujita A, Lira ES, Santos S de S, Bando SY, Soares GE, Takahashi DY. A semi-parametric statistical test to compare complex networks [Internet]. Journal of Complex Networks. 2020 ; 8( 2):[citado 2024 nov. 16 ] Available from: https://doi.org/10.1093/comnet/cnz028
  • Source: Annals of Oncology. Conference titles: European Society for Medical Oncology Congress - ESMO. Unidades: IME, EEFE, FM, BIOINFORMÁTICA

    Assunto: BIOINFORMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO JUNIOR, Gilberto de et al. Impact of systemic inflammation, intramuscular adipose tissue content, and EORTC-QLQ-CAX24 symptom scale on the prognosis of patients with advanced non-small-cell lung cancer. Annals of Oncology. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.annonc.2020.08.1460. Acesso em: 16 nov. 2024. , 2020
    • APA

      Castro Junior, G. de, Neves, W. das, Borges, A. P. de S., Carvalho, V. J., Brum, P. C., & Fujita, A. (2020). Impact of systemic inflammation, intramuscular adipose tissue content, and EORTC-QLQ-CAX24 symptom scale on the prognosis of patients with advanced non-small-cell lung cancer. Annals of Oncology. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.annonc.2020.08.1460
    • NLM

      Castro Junior G de, Neves W das, Borges AP de S, Carvalho VJ, Brum PC, Fujita A. Impact of systemic inflammation, intramuscular adipose tissue content, and EORTC-QLQ-CAX24 symptom scale on the prognosis of patients with advanced non-small-cell lung cancer [Internet]. Annals of Oncology. 2020 ; 31( supl. 4): S1047.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.annonc.2020.08.1460
    • Vancouver

      Castro Junior G de, Neves W das, Borges AP de S, Carvalho VJ, Brum PC, Fujita A. Impact of systemic inflammation, intramuscular adipose tissue content, and EORTC-QLQ-CAX24 symptom scale on the prognosis of patients with advanced non-small-cell lung cancer [Internet]. Annals of Oncology. 2020 ; 31( supl. 4): S1047.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.annonc.2020.08.1460
  • Source: Networks in systems biology : applications for disease modeling. Unidades: IME, BIOINFORMÁTICA

    Assunto: BIOINFORMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Vinicius Jardim e MORENO, Camila Castro e FUJITA, André. Computational tools for comparing gene coexpression networks. Networks in systems biology : applications for disease modeling. Tradução . Cham: Springer, 2020. . Disponível em: https://doi.org/10.1007/978-3-030-51862-2_2. Acesso em: 16 nov. 2024.
    • APA

      Carvalho, V. J., Moreno, C. C., & Fujita, A. (2020). Computational tools for comparing gene coexpression networks. In Networks in systems biology : applications for disease modeling. Cham: Springer. doi:10.1007/978-3-030-51862-2_2
    • NLM

      Carvalho VJ, Moreno CC, Fujita A. Computational tools for comparing gene coexpression networks [Internet]. In: Networks in systems biology : applications for disease modeling. Cham: Springer; 2020. [citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-3-030-51862-2_2
    • Vancouver

      Carvalho VJ, Moreno CC, Fujita A. Computational tools for comparing gene coexpression networks [Internet]. In: Networks in systems biology : applications for disease modeling. Cham: Springer; 2020. [citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/978-3-030-51862-2_2
  • Source: Precision medicine for investigators, practitioners and providers. Unidade: IME

    Subjects: DIAGNÓSTICO POR COMPUTADOR, BIOINFORMÁTICA, PSIQUIATRIA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO GUZMAN, Grover Enrique et al. Network analysis of neuropsychiatry disorders. Precision medicine for investigators, practitioners and providers. Tradução . San Diego: Elsevier, 2020. . Disponível em: https://doi.org/10.1016/B978-0-12-819178-1.00039-3. Acesso em: 16 nov. 2024.
    • APA

      Castro Guzman, G. E., Balardin, J. B., Biazoli Junior, C. E., Sato, J. R., & Fujita, A. (2020). Network analysis of neuropsychiatry disorders. In Precision medicine for investigators, practitioners and providers. San Diego: Elsevier. doi:10.1016/B978-0-12-819178-1.00039-3
    • NLM

      Castro Guzman GE, Balardin JB, Biazoli Junior CE, Sato JR, Fujita A. Network analysis of neuropsychiatry disorders [Internet]. In: Precision medicine for investigators, practitioners and providers. San Diego: Elsevier; 2020. [citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/B978-0-12-819178-1.00039-3
    • Vancouver

      Castro Guzman GE, Balardin JB, Biazoli Junior CE, Sato JR, Fujita A. Network analysis of neuropsychiatry disorders [Internet]. In: Precision medicine for investigators, practitioners and providers. San Diego: Elsevier; 2020. [citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/B978-0-12-819178-1.00039-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024