Filtros : "ATRATORES" Removidos: "SEMIGRUPOS NÃO LINEARES" "Brasil" "2016" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2024). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Source: Nonlinear Analysis: Hybrid Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, v. 51, p. 1-25, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2023.101432. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., & Kalita, P. (2024). Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, 51, 1-25. doi:10.1016/j.nahs.2023.101432
    • NLM

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
    • Vancouver

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, OPERADORES LINEARES

    Disponível em 2025-06-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, v. 24, n. 2, p. 1-37, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-00961-y. Acesso em: 05 nov. 2024.
    • APA

      Belluzi, M. (2024). Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions. Journal of Evolution Equations, 24( 2), 1-37. doi:10.1007/s00028-024-00961-y
    • NLM

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
    • Vancouver

      Belluzi M. Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions [Internet]. Journal of Evolution Equations. 2024 ; 24( 2): 1-37.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00028-024-00961-y
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES, ATRATORES, MECÂNICA ESTATÍSTICA, ESPAÇOS DE SOBOLEV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e ROIDOS, Nikolaos. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, v. 531, n. 2, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127851. Acesso em: 05 nov. 2024.
    • APA

      Lopes, P. T. P., & Roidos, N. (2024). Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, 531( 2). doi:10.1016/j.jmaa.2023.127851
    • NLM

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
    • Vancouver

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JULIO PÉREZ, Yessica Yuliet e CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 05 nov. 2024.
    • APA

      Julio Pérez, Y. Y., Caraballo, T., & Carvalho, A. N. de. (2024). Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Julio Pérez YY, Caraballo T, Carvalho AN de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness [Internet]. Abstracts. 2024 ;[citado 2024 nov. 05 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Julio Pérez YY, Caraballo T, Carvalho AN de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness [Internet]. Abstracts. 2024 ;[citado 2024 nov. 05 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Unidade: IME

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LORENZI, Bianca Paolini. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/. Acesso em: 05 nov. 2024.
    • APA

      Lorenzi, B. P. (2023). Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
    • NLM

      Lorenzi BP. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
    • Vancouver

      Lorenzi BP. Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082023-203143/
  • Unidade: IME

    Subjects: ATRATORES, FRACTAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gabriela Cristina da. Uma abordagem topológica e dinâmica à geometria fractal. 2023. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/. Acesso em: 05 nov. 2024.
    • APA

      Silva, G. C. da. (2023). Uma abordagem topológica e dinâmica à geometria fractal (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
    • NLM

      Silva GC da. Uma abordagem topológica e dinâmica à geometria fractal [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
    • Vancouver

      Silva GC da. Uma abordagem topológica e dinâmica à geometria fractal [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
  • Unidade: ICMC

    Subjects: ATRATORES, ESTABILIDADE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/. Acesso em: 05 nov. 2024.
    • APA

      Azevedo, V. T. (2023). Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
    • NLM

      Azevedo VT. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
    • Vancouver

      Azevedo VT. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
  • Unidade: IME

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDONÇA, Lucas Galhego. Atratores pullback para uma equação parabólica semilinear com condições de fronteira de Neumann homogêneas e domínios variando com o tempo. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06022024-175344/. Acesso em: 05 nov. 2024.
    • APA

      Mendonça, L. G. (2023). Atratores pullback para uma equação parabólica semilinear com condições de fronteira de Neumann homogêneas e domínios variando com o tempo (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06022024-175344/
    • NLM

      Mendonça LG. Atratores pullback para uma equação parabólica semilinear com condições de fronteira de Neumann homogêneas e domínios variando com o tempo [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06022024-175344/
    • Vancouver

      Mendonça LG. Atratores pullback para uma equação parabólica semilinear com condições de fronteira de Neumann homogêneas e domínios variando com o tempo [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06022024-175344/
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, ATRATORES, TEORIA DA BIFURCAÇÃO

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes. Nonlocal quasilinear variations of the Chafee-Infante problem. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/. Acesso em: 05 nov. 2024.
    • APA

      Moreira, E. M. (2023). Nonlocal quasilinear variations of the Chafee-Infante problem (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/
    • NLM

      Moreira EM. Nonlocal quasilinear variations of the Chafee-Infante problem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/
    • Vancouver

      Moreira EM. Nonlocal quasilinear variations of the Chafee-Infante problem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: ANÁLISE GLOBAL, ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, v. 28, n. Ja 2023, p. 426-448, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2022083. Acesso em: 05 nov. 2024.
    • APA

      Carvalho, A. N. de, Rocha, L. R. N., Langa, J. A., & Obaya, R. (2023). Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, 28( Ja 2023), 426-448. doi:10.3934/dcdsb.2022083
    • NLM

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/dcdsb.2022083
    • Vancouver

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/dcdsb.2022083
  • Source: Revista Matematica Complutense. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, v. 36, n. 3, p. 725-747, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13163-022-00435-0. Acesso em: 05 nov. 2024.
    • APA

      Lappicy, P. (2023). Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, 36( 3), 725-747. doi:10.1007/s13163-022-00435-0
    • NLM

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
    • Vancouver

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, TEORIA DE SISTEMAS, EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES IMPULSIVAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACCARINI, Luiza Gomes. Teoria de atratores em sistemas dinâmicos impulsivos. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/. Acesso em: 05 nov. 2024.
    • APA

      Accarini, L. G. (2022). Teoria de atratores em sistemas dinâmicos impulsivos (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/
    • NLM

      Accarini LG. Teoria de atratores em sistemas dinâmicos impulsivos [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/
    • Vancouver

      Accarini LG. Teoria de atratores em sistemas dinâmicos impulsivos [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032022-095423/
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, DIMENSÃO INFINITA, ESTABILIDADE ESTRUTURAL, ATRATORES, ROBUSTEZ

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUSA, Alexandre do Nascimento Oliveira. Robustness of nonuniform and random exponential dichotomies with applications to differential equations. 2022. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/. Acesso em: 05 nov. 2024.
    • APA

      Sousa, A. do N. O. (2022). Robustness of nonuniform and random exponential dichotomies with applications to differential equations (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/
    • NLM

      Sousa A do NO. Robustness of nonuniform and random exponential dichotomies with applications to differential equations [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/
    • Vancouver

      Sousa A do NO. Robustness of nonuniform and random exponential dichotomies with applications to differential equations [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/
  • Unidade: ICMC

    Subjects: ANÁLISE ESPECTRAL, OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOURA, Rafael de Oliveira. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/. Acesso em: 05 nov. 2024.
    • APA

      Moura, R. de O. (2022). Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
    • NLM

      Moura R de O. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
    • Vancouver

      Moura R de O. Stability and hyperbolicity of equilibria for a nonlocal quasilinear Chafee-Infante equation [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27052022-102622/
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BANAṤKIEWICZ, Jakub et al. Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-022-10239-x. Acesso em: 05 nov. 2024.
    • APA

      Banaṥkiewicz, J., Carvalho, A. N. de, Garcia-Fuentes, J., & Kalita, P. (2022). Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-022-10239-x
    • NLM

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2022 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
    • Vancouver

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2022 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 05 nov. 2024.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 05 nov. 2024.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, v. No 2022, n. 7, p. 2240024-1-2240024-28, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021949372240024X. Acesso em: 05 nov. 2024.
    • APA

      Caraballo, T., Langa, J. A., Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2022). Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, No 2022( 7), 2240024-1-2240024-28. doi:10.1142/S021949372240024X
    • NLM

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S021949372240024X
    • Vancouver

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S021949372240024X
  • Unidade: IF

    Subjects: MECÂNICA ESTATÍSTICA, REDES NEURAIS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANIN, Pietro. Análise de redes neurais de atratores interagentes por meio de um modelo com solução analítica. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-22022023-134919/. Acesso em: 05 nov. 2024.
    • APA

      Zanin, P. (2022). Análise de redes neurais de atratores interagentes por meio de um modelo com solução analítica (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/43/43134/tde-22022023-134919/
    • NLM

      Zanin P. Análise de redes neurais de atratores interagentes por meio de um modelo com solução analítica [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-22022023-134919/
    • Vancouver

      Zanin P. Análise de redes neurais de atratores interagentes por meio de um modelo com solução analítica [Internet]. 2022 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-22022023-134919/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024