Filtros : "ATRATORES" "Nascimento, Marcelo José Dias" Removidos: "SEMIGRUPOS NÃO LINEARES" "2016" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 05 nov. 2024.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: ATRATORES, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, v. 90, p. 1-47, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00245-024-10170-1. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., Carvalho, A. N. de, Nascimento, M. J. D., & Santiago, E. B. (2024). Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, 90, 1-47. doi:10.1007/s00245-024-10170-1
    • NLM

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
    • Vancouver

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Disponível em 2025-08-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 05 nov. 2024.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2024). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Unidade: ICMC

    Subjects: ATRATORES, ESTABILIDADE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/. Acesso em: 05 nov. 2024.
    • APA

      Azevedo, V. T. (2023). Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
    • NLM

      Azevedo VT. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
    • Vancouver

      Azevedo VT. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, ATRATORES, TEORIA DA BIFURCAÇÃO

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes. Nonlocal quasilinear variations of the Chafee-Infante problem. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/. Acesso em: 05 nov. 2024.
    • APA

      Moreira, E. M. (2023). Nonlocal quasilinear variations of the Chafee-Infante problem (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/
    • NLM

      Moreira EM. Nonlocal quasilinear variations of the Chafee-Infante problem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/
    • Vancouver

      Moreira EM. Nonlocal quasilinear variations of the Chafee-Infante problem [Internet]. 2023 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12062023-163429/
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares et al. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, v. 365, p. 521-559, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.022. Acesso em: 05 nov. 2024.
    • APA

      Azevedo, V. T., Bonotto, E. de M., Cunha, A. C., & Nascimento, M. J. D. (2023). Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, 365, 521-559. doi:10.1016/j.jde.2023.04.022
    • NLM

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
    • Vancouver

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
  • Source: Nonlinear Differential Equations and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e WEBLER, C. M. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, v. 30, p. 1-29, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00859-7. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Webler, C. M. (2023). Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, 30, 1-29. doi:10.1007/s00030-023-00859-7
    • NLM

      Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00030-023-00859-7
    • Vancouver

      Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00030-023-00859-7
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 05 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e NASCIMENTO, Marcelo José Dias e RUBIO, Obidio. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. Nonlinear Analysis, v. 225, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.113107. Acesso em: 05 nov. 2024.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., & Rubio, O. (2022). Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. Nonlinear Analysis, 225, 1-35. doi:10.1016/j.na.2022.113107
    • NLM

      López-Lázaro H, Nascimento MJD, Rubio O. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary [Internet]. Nonlinear Analysis. 2022 ; 225 1-35.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.na.2022.113107
    • Vancouver

      López-Lázaro H, Nascimento MJD, Rubio O. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary [Internet]. Nonlinear Analysis. 2022 ; 225 1-35.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.na.2022.113107
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de e NASCIMENTO, Marcelo José Dias. Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems : Series B, v. No 2020, n. 11, p. 4221-4255, 2020Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020095. Acesso em: 05 nov. 2024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, & Nascimento, M. J. D. (2020). Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems : Series B, No 2020( 11), 4221-4255. doi:10.3934/dcdsb.2020095
    • NLM

      Bezerra FDM, Carvalho AN de, Nascimento MJD. Fractional approximations of abstract semilinear parabolic problems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; No 2020( 11): 4221-4255.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/dcdsb.2020095
    • Vancouver

      Bezerra FDM, Carvalho AN de, Nascimento MJD. Fractional approximations of abstract semilinear parabolic problems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; No 2020( 11): 4221-4255.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/dcdsb.2020095

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024