Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling (2023)
- Authors:
- Autor USP: BONOTTO, EVERALDO DE MELLO - ICMC
- Unidade: ICMC
- DOI: 10.1007/s00030-023-00859-7
- Subjects: ATRATORES; EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS
- Keywords: Klein–Gordon–Schrödinger system; Global well-posedness; Pullback attractor; Weak pullback attractor; Yukawa coupling
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Nonlinear Differential Equations and Applications
- ISSN: 1021-9722
- Volume/Número/Paginação/Ano: v. 30, p. 1-29, 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e WEBLER, C. M. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, v. 30, p. 1-29, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00859-7. Acesso em: 24 jan. 2026. -
APA
Bonotto, E. de M., Nascimento, M. J. D., & Webler, C. M. (2023). Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, 30, 1-29. doi:10.1007/s00030-023-00859-7 -
NLM
Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s00030-023-00859-7 -
Vancouver
Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s00030-023-00859-7 - Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times
- Impulsive surfaces on dynamical systems
- Global attractors for a class of discrete dynamical systems
- On the Lyapunov stability theory for impulsive dynamical systems
- Weak almost periodic motions, minimality and stability in impulsive semidynamical systems
- Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order
- Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation
- Convergence for non-autonomos semidynamical systems with impulses
- A equação de Black-Scholes com ação impulsiva
- Sections and parallelizable semigroups
Informações sobre o DOI: 10.1007/s00030-023-00859-7 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3139351.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
