Filtros : "Indexado no Scopus" "MELLO, RODRIGO FERNANDES DE" Removidos: "AUBERT, FRANCIS HENRIK" "Medicina Preventiva" "1953" "SBBq" Limpar

Filtros



Refine with date range


  • Source: Journal of Visualization. Unidade: ICMC

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, VISUALIZAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Martha Dais et al. Neural network training fingerprint: visual analytics of the training process in classification neural networks. Journal of Visualization, v. 25, n. 3, p. 593-612, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12650-021-00809-4. Acesso em: 12 nov. 2024.
    • APA

      Ferreira, M. D., Cantareira, G. D., Mello, R. F. de, & Paulovich, F. V. (2022). Neural network training fingerprint: visual analytics of the training process in classification neural networks. Journal of Visualization, 25( 3), 593-612. doi:10.1007/s12650-021-00809-4
    • NLM

      Ferreira MD, Cantareira GD, Mello RF de, Paulovich FV. Neural network training fingerprint: visual analytics of the training process in classification neural networks [Internet]. Journal of Visualization. 2022 ; 25( 3): 593-612.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s12650-021-00809-4
    • Vancouver

      Ferreira MD, Cantareira GD, Mello RF de, Paulovich FV. Neural network training fingerprint: visual analytics of the training process in classification neural networks [Internet]. Journal of Visualization. 2022 ; 25( 3): 593-612.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s12650-021-00809-4
  • Source: Journal of Experimental and Theoretical Artificial Intelligence. Unidades: ICMC, ESALQ

    Subjects: APRENDIZADO COMPUTACIONAL, BIODIVERSIDADE, FLORESTAS TROPICAIS, MODELAGEM DE DADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIOS, Ricardo Araújo et al. Brazilian forest dataset: a new dataset to model local biodiversity. Journal of Experimental and Theoretical Artificial Intelligence, v. 34, p. 327-354, 2022Tradução . . Disponível em: https://doi.org/10.1080/0952813X.2021.1871972. Acesso em: 12 nov. 2024.
    • APA

      Rios, R. A., Rios, T. N., Palma, G. R., & Mello, R. F. de. (2022). Brazilian forest dataset: a new dataset to model local biodiversity. Journal of Experimental and Theoretical Artificial Intelligence, 34, 327-354. doi:10.1080/0952813X.2021.1871972
    • NLM

      Rios RA, Rios TN, Palma GR, Mello RF de. Brazilian forest dataset: a new dataset to model local biodiversity [Internet]. Journal of Experimental and Theoretical Artificial Intelligence. 2022 ; 34 327-354.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1080/0952813X.2021.1871972
    • Vancouver

      Rios RA, Rios TN, Palma GR, Mello RF de. Brazilian forest dataset: a new dataset to model local biodiversity [Internet]. Journal of Experimental and Theoretical Artificial Intelligence. 2022 ; 34 327-354.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1080/0952813X.2021.1871972
  • Source: Information Sciences. Unidade: ICMC

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, COMPUTAÇÃO EVOLUTIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARADHYA, Abhay M. S et al. Autonomous CNN (AutoCNN): a data-driven approach to network architecture determination. Information Sciences, v. 607, p. 638-653, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2022.05.100. Acesso em: 12 nov. 2024.
    • APA

      Aradhya, A. M. S., Ashfahani, A., Angelina, F., Pratama, M., Mello, R. F. de, & Sundaram, S. (2022). Autonomous CNN (AutoCNN): a data-driven approach to network architecture determination. Information Sciences, 607, 638-653. doi:10.1016/j.ins.2022.05.100
    • NLM

      Aradhya AMS, Ashfahani A, Angelina F, Pratama M, Mello RF de, Sundaram S. Autonomous CNN (AutoCNN): a data-driven approach to network architecture determination [Internet]. Information Sciences. 2022 ; 607 638-653.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.ins.2022.05.100
    • Vancouver

      Aradhya AMS, Ashfahani A, Angelina F, Pratama M, Mello RF de, Sundaram S. Autonomous CNN (AutoCNN): a data-driven approach to network architecture determination [Internet]. Information Sciences. 2022 ; 607 638-653.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.ins.2022.05.100
  • Source: Applied Acoustics. Unidade: ICMC

    Subjects: RECUPERAÇÃO DA INFORMAÇÃO, RECONHECIMENTO DE PADRÕES, ALGORITMOS ÚTEIS E ESPECÍFICOS, MÚSICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Martha Dais e MELLO, Rodrigo Fernandes de. Time complexity evaluation of cover song identification algorithms. Applied Acoustics, v. 175, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.apacoust.2020.107777. Acesso em: 12 nov. 2024.
    • APA

      Ferreira, M. D., & Mello, R. F. de. (2021). Time complexity evaluation of cover song identification algorithms. Applied Acoustics, 175, 1-11. doi:10.1016/j.apacoust.2020.107777
    • NLM

      Ferreira MD, Mello RF de. Time complexity evaluation of cover song identification algorithms [Internet]. Applied Acoustics. 2021 ; 175 1-11.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.apacoust.2020.107777
    • Vancouver

      Ferreira MD, Mello RF de. Time complexity evaluation of cover song identification algorithms [Internet]. Applied Acoustics. 2021 ; 175 1-11.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.apacoust.2020.107777
  • Source: Connection Science. Unidade: ICMC

    Subjects: COMPUTAÇÃO EM NUVEM, RECUPERAÇÃO DA INFORMAÇÃO, CRIPTOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      XIAO, Tingting et al. Multi-keyword ranked search based on mapping set matching in cloud ciphertext storage system. Connection Science, v. 33, n. 1, p. 95-112, 2021Tradução . . Disponível em: https://doi.org/10.1080/09540091.2020.1753175. Acesso em: 12 nov. 2024.
    • APA

      Xiao, T., Han, D., He, J., Li, K. -C., & Mello, R. F. de. (2021). Multi-keyword ranked search based on mapping set matching in cloud ciphertext storage system. Connection Science, 33( 1), 95-112. doi:10.1080/09540091.2020.1753175
    • NLM

      Xiao T, Han D, He J, Li K-C, Mello RF de. Multi-keyword ranked search based on mapping set matching in cloud ciphertext storage system [Internet]. Connection Science. 2021 ; 33( 1): 95-112.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1080/09540091.2020.1753175
    • Vancouver

      Xiao T, Han D, He J, Li K-C, Mello RF de. Multi-keyword ranked search based on mapping set matching in cloud ciphertext storage system [Internet]. Connection Science. 2021 ; 33( 1): 95-112.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1080/09540091.2020.1753175
  • Source: Scientific Reports. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, BIOINFORMÁTICA, HEMOFILIA, PROTEÍNAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Tiago José da Silva et al. Protein residue network analysis reveals fundamental properties of the human coagulation factor VIII. Scientific Reports, v. 11, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1038/s41598-021-92201-3. Acesso em: 12 nov. 2024.
    • APA

      Lopes, T. J. da S., Rios, R. A., Nogueira, T., & Mello, R. F. de. (2021). Protein residue network analysis reveals fundamental properties of the human coagulation factor VIII. Scientific Reports, 11, 1-11. doi:10.1038/s41598-021-92201-3
    • NLM

      Lopes TJ da S, Rios RA, Nogueira T, Mello RF de. Protein residue network analysis reveals fundamental properties of the human coagulation factor VIII [Internet]. Scientific Reports. 2021 ; 11 1-11.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41598-021-92201-3
    • Vancouver

      Lopes TJ da S, Rios RA, Nogueira T, Mello RF de. Protein residue network analysis reveals fundamental properties of the human coagulation factor VIII [Internet]. Scientific Reports. 2021 ; 11 1-11.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41598-021-92201-3
  • Source: Applied Soft Computing. Unidade: ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, FUZZY (INTELIGÊNCIA ARTIFICIAL)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Marcos Vinícius dos Santos et al. Using fuzzy clustering to address imprecision and uncertainty present in deterministic components of time series. Applied Soft Computing, v. 113, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.asoc.2021.108011. Acesso em: 12 nov. 2024.
    • APA

      Ferreira, M. V. dos S., Rios, R. A., Mello, R. F. de, & Rios, T. N. (2021). Using fuzzy clustering to address imprecision and uncertainty present in deterministic components of time series. Applied Soft Computing, 113, 1-13. doi:10.1016/j.asoc.2021.108011
    • NLM

      Ferreira MV dos S, Rios RA, Mello RF de, Rios TN. Using fuzzy clustering to address imprecision and uncertainty present in deterministic components of time series [Internet]. Applied Soft Computing. 2021 ; 113 1-13.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.asoc.2021.108011
    • Vancouver

      Ferreira MV dos S, Rios RA, Mello RF de, Rios TN. Using fuzzy clustering to address imprecision and uncertainty present in deterministic components of time series [Internet]. Applied Soft Computing. 2021 ; 113 1-13.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.asoc.2021.108011
  • Source: npj Systems Biology and Applications. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, BIOINFORMÁTICA, HEMOFILIA, PROTEÍNAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Tiago José da Silva et al. Prediction of hemophilia A severity using a small-input machine-learning framework. npj Systems Biology and Applications, v. 7, p. 1-8, 2021Tradução . . Disponível em: https://doi.org/10.1038/s41540-021-00183-9. Acesso em: 12 nov. 2024.
    • APA

      Lopes, T. J. da S., Rios, R. A., Nogueira, T., & Mello, R. F. de. (2021). Prediction of hemophilia A severity using a small-input machine-learning framework. npj Systems Biology and Applications, 7, 1-8. doi:10.1038/s41540-021-00183-9
    • NLM

      Lopes TJ da S, Rios RA, Nogueira T, Mello RF de. Prediction of hemophilia A severity using a small-input machine-learning framework [Internet]. npj Systems Biology and Applications. 2021 ; 7 1-8.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41540-021-00183-9
    • Vancouver

      Lopes TJ da S, Rios RA, Nogueira T, Mello RF de. Prediction of hemophilia A severity using a small-input machine-learning framework [Internet]. npj Systems Biology and Applications. 2021 ; 7 1-8.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41540-021-00183-9
  • Source: Expert Systems with Applications. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE PADRÕES, HOMOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VAZ, Yule e MELLO, Rodrigo Fernandes de e GROSSI, Carlos Henrique. Coarse-refinement dilemma: on generalization bounds for data clustering. Expert Systems with Applications, v. 184, p. 1-28, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2021.115399. Acesso em: 12 nov. 2024.
    • APA

      Vaz, Y., Mello, R. F. de, & Grossi, C. H. (2021). Coarse-refinement dilemma: on generalization bounds for data clustering. Expert Systems with Applications, 184, 1-28. doi:10.1016/j.eswa.2021.115399
    • NLM

      Vaz Y, Mello RF de, Grossi CH. Coarse-refinement dilemma: on generalization bounds for data clustering [Internet]. Expert Systems with Applications. 2021 ; 184 1-28.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.eswa.2021.115399
    • Vancouver

      Vaz Y, Mello RF de, Grossi CH. Coarse-refinement dilemma: on generalization bounds for data clustering [Internet]. Expert Systems with Applications. 2021 ; 184 1-28.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.eswa.2021.115399
  • Source: Soft Computing. Unidade: ICMC

    Subjects: VISÃO COMPUTACIONAL, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Dezhi et al. Cross-modality co-attention networks for visual question answering. Soft Computing, v. 25, n. 7, p. 5411-5421, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00500-020-05539-7. Acesso em: 12 nov. 2024.
    • APA

      Han, D., Zhou, S., Li, K. -C., & Mello, R. F. de. (2021). Cross-modality co-attention networks for visual question answering. Soft Computing, 25( 7), 5411-5421. doi:10.1007/s00500-020-05539-7
    • NLM

      Han D, Zhou S, Li K-C, Mello RF de. Cross-modality co-attention networks for visual question answering [Internet]. Soft Computing. 2021 ; 25( 7): 5411-5421.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s00500-020-05539-7
    • Vancouver

      Han D, Zhou S, Li K-C, Mello RF de. Cross-modality co-attention networks for visual question answering [Internet]. Soft Computing. 2021 ; 25( 7): 5411-5421.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s00500-020-05539-7
  • Source: Scientific Reports. Unidade: ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, INTELIGÊNCIA ARTIFICIAL, SURTOS DE DOENÇAS, COVID-19

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIOS, Ricardo Araújo et al. Country transition index based on hierarchical clustering to predict next COVID-19 waves. Scientific Reports, v. 11, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1038/s41598-021-94661-z. Acesso em: 12 nov. 2024.
    • APA

      Rios, R. A., Nogueira, T., Coimbra, D. B., Lopes, T. J. da S., Abraham, A., & Mello, R. F. de. (2021). Country transition index based on hierarchical clustering to predict next COVID-19 waves. Scientific Reports, 11, 1-13. doi:10.1038/s41598-021-94661-z
    • NLM

      Rios RA, Nogueira T, Coimbra DB, Lopes TJ da S, Abraham A, Mello RF de. Country transition index based on hierarchical clustering to predict next COVID-19 waves [Internet]. Scientific Reports. 2021 ; 11 1-13.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41598-021-94661-z
    • Vancouver

      Rios RA, Nogueira T, Coimbra DB, Lopes TJ da S, Abraham A, Mello RF de. Country transition index based on hierarchical clustering to predict next COVID-19 waves [Internet]. Scientific Reports. 2021 ; 11 1-13.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1038/s41598-021-94661-z
  • Source: International Journal of Computational Science and Engineering. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ANÁLISE DE SÉRIES TEMPORAIS, RECONHECIMENTO DE PADRÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Mirlei M. da e MELLO, Rodrigo Fernandes de e RIOS, Ricardo A. Time series clustering using stochastic and deterministic influences. International Journal of Computational Science and Engineering, v. 21, n. 3, p. 394-417, 2020Tradução . . Disponível em: https://doi.org/10.1504/IJCSE.2020.106063. Acesso em: 12 nov. 2024.
    • APA

      Silva, M. M. da, Mello, R. F. de, & Rios, R. A. (2020). Time series clustering using stochastic and deterministic influences. International Journal of Computational Science and Engineering, 21( 3), 394-417. doi:10.1504/IJCSE.2020.106063
    • NLM

      Silva MM da, Mello RF de, Rios RA. Time series clustering using stochastic and deterministic influences [Internet]. International Journal of Computational Science and Engineering. 2020 ; 21( 3): 394-417.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1504/IJCSE.2020.106063
    • Vancouver

      Silva MM da, Mello RF de, Rios RA. Time series clustering using stochastic and deterministic influences [Internet]. International Journal of Computational Science and Engineering. 2020 ; 21( 3): 394-417.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1504/IJCSE.2020.106063
  • Source: Data in Brief. Unidade: ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, REDES NEURAIS, VULCÕES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANÁRIO, João Paulo et al. Llaima volcano dataset: in-depth comparison of deep artificial neural network architectures on seismic events classification. Data in Brief, v. 30, p. 1-6, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.dib.2020.105627. Acesso em: 12 nov. 2024.
    • APA

      Canário, J. P., Mello, R. F. de, Curilem, M., Huenupan, F., & Rios, R. A. (2020). Llaima volcano dataset: in-depth comparison of deep artificial neural network architectures on seismic events classification. Data in Brief, 30, 1-6. doi:10.1016/j.dib.2020.105627
    • NLM

      Canário JP, Mello RF de, Curilem M, Huenupan F, Rios RA. Llaima volcano dataset: in-depth comparison of deep artificial neural network architectures on seismic events classification [Internet]. Data in Brief. 2020 ; 30 1-6.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.dib.2020.105627
    • Vancouver

      Canário JP, Mello RF de, Curilem M, Huenupan F, Rios RA. Llaima volcano dataset: in-depth comparison of deep artificial neural network architectures on seismic events classification [Internet]. Data in Brief. 2020 ; 30 1-6.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.dib.2020.105627
  • Source: Journal of Volcanology and Geothermal Research. Unidade: ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, REDES NEURAIS, VULCÕES, ANÁLISE DE ONDALETAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANÁRIO, João Paulo et al. In-depth comparison of deep artificial neural network architectures on seismic events classification. Journal of Volcanology and Geothermal Research, v. 401, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jvolgeores.2020.106881. Acesso em: 12 nov. 2024.
    • APA

      Canário, J. P., Mello, R. F. de, Curilem, M., Huenupan, F., & Rios, R. A. (2020). In-depth comparison of deep artificial neural network architectures on seismic events classification. Journal of Volcanology and Geothermal Research, 401, Se 2020. doi:10.1016/j.jvolgeores.2020.106881
    • NLM

      Canário JP, Mello RF de, Curilem M, Huenupan F, Rios RA. In-depth comparison of deep artificial neural network architectures on seismic events classification [Internet]. Journal of Volcanology and Geothermal Research. 2020 ; 401 Se 2020.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jvolgeores.2020.106881
    • Vancouver

      Canário JP, Mello RF de, Curilem M, Huenupan F, Rios RA. In-depth comparison of deep artificial neural network architectures on seismic events classification [Internet]. Journal of Volcanology and Geothermal Research. 2020 ; 401 Se 2020.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jvolgeores.2020.106881
  • Source: Journal of Applied Physics. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, MÉTODO DOS ELEMENTOS FINITOS, FORNO ELÉTRICO, TRANSFERÊNCIA DE CALOR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Denise P et al. Estimating the thermal insulating performance of multi-component refractory ceramic systems based on a machine learning surrogate model framework. Journal of Applied Physics, v. 127, n. 21, p. 215104-1-215104-7, 2020Tradução . . Disponível em: https://doi.org/10.1063/5.0004395. Acesso em: 12 nov. 2024.
    • APA

      Santos, D. P., Pelissari, P. I. B. G. B., Mello, R. F. de, & Pandolfelli, V. C. (2020). Estimating the thermal insulating performance of multi-component refractory ceramic systems based on a machine learning surrogate model framework. Journal of Applied Physics, 127( 21), 215104-1-215104-7. doi:10.1063/5.0004395
    • NLM

      Santos DP, Pelissari PIBGB, Mello RF de, Pandolfelli VC. Estimating the thermal insulating performance of multi-component refractory ceramic systems based on a machine learning surrogate model framework [Internet]. Journal of Applied Physics. 2020 ; 127( 21): 215104-1-215104-7.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1063/5.0004395
    • Vancouver

      Santos DP, Pelissari PIBGB, Mello RF de, Pandolfelli VC. Estimating the thermal insulating performance of multi-component refractory ceramic systems based on a machine learning surrogate model framework [Internet]. Journal of Applied Physics. 2020 ; 127( 21): 215104-1-215104-7.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1063/5.0004395
  • Source: Sensors. Unidade: ICMC

    Subjects: WIRELESS, ALGORITMOS GENÉTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Dezhi et al. Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks. Sensors, v. 20, p. 1-24, 2020Tradução . . Disponível em: https://doi.org/10.3390/s20020343. Acesso em: 12 nov. 2024.
    • APA

      Han, D., Yu, Y., Li, K. -C., & Mello, R. F. de. (2020). Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks. Sensors, 20, 1-24. doi:10.3390/s20020343
    • NLM

      Han D, Yu Y, Li K-C, Mello RF de. Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks [Internet]. Sensors. 2020 ; 20 1-24.[citado 2024 nov. 12 ] Available from: https://doi.org/10.3390/s20020343
    • Vancouver

      Han D, Yu Y, Li K-C, Mello RF de. Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks [Internet]. Sensors. 2020 ; 20 1-24.[citado 2024 nov. 12 ] Available from: https://doi.org/10.3390/s20020343
  • Source: Journal of the Brazilian Computer Society. Unidade: ICMC

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE VOZ

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHULBY, Christopher D et al. Theoretical learning guarantees applied to acoustic modeling. Journal of the Brazilian Computer Society, v. 25, p. 1-12, 2019Tradução . . Disponível em: https://doi.org/10.1186/s13173-018-0081-3. Acesso em: 12 nov. 2024.
    • APA

      Shulby, C. D., Ferreira, M. D., Mello, R. F. de, & Aluísio, S. M. (2019). Theoretical learning guarantees applied to acoustic modeling. Journal of the Brazilian Computer Society, 25, 1-12. doi:10.1186/s13173-018-0081-3
    • NLM

      Shulby CD, Ferreira MD, Mello RF de, Aluísio SM. Theoretical learning guarantees applied to acoustic modeling [Internet]. Journal of the Brazilian Computer Society. 2019 ; 25 1-12.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1186/s13173-018-0081-3
    • Vancouver

      Shulby CD, Ferreira MD, Mello RF de, Aluísio SM. Theoretical learning guarantees applied to acoustic modeling [Internet]. Journal of the Brazilian Computer Society. 2019 ; 25 1-12.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1186/s13173-018-0081-3
  • Source: Digital Signal Processing. Unidades: EP, ICMC

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, MÉTODOS DE DECOMPOSIÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUARTE, Felipe Simões Lage Gomes et al. Decomposing time series into deterministic and stochastic influences: a survey. Digital Signal Processing, v. 95, p. 1-18, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.dsp.2019.102582. Acesso em: 12 nov. 2024.
    • APA

      Duarte, F. S. L. G., Rios, R. A., Hruschka, E. R., & Mello, R. F. de. (2019). Decomposing time series into deterministic and stochastic influences: a survey. Digital Signal Processing, 95, 1-18. doi:10.1016/j.dsp.2019.102582
    • NLM

      Duarte FSLG, Rios RA, Hruschka ER, Mello RF de. Decomposing time series into deterministic and stochastic influences: a survey [Internet]. Digital Signal Processing. 2019 ; 95 1-18.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.dsp.2019.102582
    • Vancouver

      Duarte FSLG, Rios RA, Hruschka ER, Mello RF de. Decomposing time series into deterministic and stochastic influences: a survey [Internet]. Digital Signal Processing. 2019 ; 95 1-18.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.dsp.2019.102582
  • Source: International Journal of High Performance Computing and Networking. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, BIG DATA, RECONHECIMENTO DE PADRÕES, ANÁLISE DE SÉRIES TEMPORAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALBERTINI, Marcelo Keese e MELLO, Rodrigo Fernandes de. Estimating data stream tendencies to adapt clustering parameters. International Journal of High Performance Computing and Networking, v. 11, n. 1, p. 34-44, 2018Tradução . . Disponível em: https://doi.org/10.1504/IJHPCN.2018.088877. Acesso em: 12 nov. 2024.
    • APA

      Albertini, M. K., & Mello, R. F. de. (2018). Estimating data stream tendencies to adapt clustering parameters. International Journal of High Performance Computing and Networking, 11( 1), 34-44. doi:10.1504/IJHPCN.2018.088877
    • NLM

      Albertini MK, Mello RF de. Estimating data stream tendencies to adapt clustering parameters [Internet]. International Journal of High Performance Computing and Networking. 2018 ; 11( 1): 34-44.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1504/IJHPCN.2018.088877
    • Vancouver

      Albertini MK, Mello RF de. Estimating data stream tendencies to adapt clustering parameters [Internet]. International Journal of High Performance Computing and Networking. 2018 ; 11( 1): 34-44.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1504/IJHPCN.2018.088877
  • Source: Journal of Volcanology and Geothermal Research. Unidade: ICMC

    Subjects: VULCÕES, ONDAS SÍSMICAS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE PADRÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CURILEM, Millaray et al. Discriminating seismic events of the Llaima volcano (Chile) based on spectrogram cross-correlations. Journal of Volcanology and Geothermal Research, v. No 2018, p. 63-78, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jvolgeores.2018.10.023. Acesso em: 12 nov. 2024.
    • APA

      Curilem, M., Mello, R. F. de, Huenupan, F., San Martin, C., Franco, L., Hernández, E., & Rios, R. A. (2018). Discriminating seismic events of the Llaima volcano (Chile) based on spectrogram cross-correlations. Journal of Volcanology and Geothermal Research, No 2018, 63-78. doi:10.1016/j.jvolgeores.2018.10.023
    • NLM

      Curilem M, Mello RF de, Huenupan F, San Martin C, Franco L, Hernández E, Rios RA. Discriminating seismic events of the Llaima volcano (Chile) based on spectrogram cross-correlations [Internet]. Journal of Volcanology and Geothermal Research. 2018 ; No 2018 63-78.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jvolgeores.2018.10.023
    • Vancouver

      Curilem M, Mello RF de, Huenupan F, San Martin C, Franco L, Hernández E, Rios RA. Discriminating seismic events of the Llaima volcano (Chile) based on spectrogram cross-correlations [Internet]. Journal of Volcanology and Geothermal Research. 2018 ; No 2018 63-78.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jvolgeores.2018.10.023

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024