Filtros : "Indexado no ISI Web of Knowledge" "Piccione, Paolo" Removido: "GEOMETRIA GLOBAL" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: CÁLCULO DE VARIAÇÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G e PICCIONE, Paolo. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, v. 47, n. 3-4, p. 789-807, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00526-012-0535-y. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., & Piccione, P. (2013). Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, 47( 3-4), 789-807. doi:10.1007/s00526-012-0535-y
    • NLM

      Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-012-0535-y
    • Vancouver

      Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-012-0535-y
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato G. e PICCIONE, Paolo. Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions. Pacific Journal of Mathematics, v. 266, n. 1, p. 1-21, 2013Tradução . . Disponível em: https://doi.org/10.2140/pjm.2013.266.1. Acesso em: 07 nov. 2024.
    • APA

      Bettiol, R. G., & Piccione, P. (2013). Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions. Pacific Journal of Mathematics, 266( 1), 1-21. doi:10.2140/pjm.2013.266.1
    • NLM

      Bettiol RG, Piccione P. Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions [Internet]. Pacific Journal of Mathematics. 2013 ; 266( 1): 1-21.[citado 2024 nov. 07 ] Available from: https://doi.org/10.2140/pjm.2013.266.1
    • Vancouver

      Bettiol RG, Piccione P. Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions [Internet]. Pacific Journal of Mathematics. 2013 ; 266( 1): 1-21.[citado 2024 nov. 07 ] Available from: https://doi.org/10.2140/pjm.2013.266.1
  • Source: Journal of Geometric Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALIÁS, Luis J e PICCIONE, Paolo. Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres. Journal of Geometric Analysis, v. 23, n. 2, p. 677-708, 2013Tradução . . Disponível em: https://doi.org/10.1007/s12220-011-9260-6. Acesso em: 07 nov. 2024.
    • APA

      Aliás, L. J., & Piccione, P. (2013). Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres. Journal of Geometric Analysis, 23( 2), 677-708. doi:10.1007/s12220-011-9260-6
    • NLM

      Aliás LJ, Piccione P. Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres [Internet]. Journal of Geometric Analysis. 2013 ; 23( 2): 677-708.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s12220-011-9260-6
    • Vancouver

      Aliás LJ, Piccione P. Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres [Internet]. Journal of Geometric Analysis. 2013 ; 23( 2): 677-708.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s12220-011-9260-6
  • Source: Archive for Rational Mechanics and Analysis. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, v. 200, n. 2, p. 691-724, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00205-010-0371-1. Acesso em: 07 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2011). Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, 200( 2), 691-724. doi:10.1007/s00205-010-0371-1
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00205-010-0371-1
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00205-010-0371-1
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FLORES, Jose Luis e JAVALOYES, Miguel Angel e PICCIONE, Paolo. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, v. 267, n. 1-2, p. 221-233, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00209-009-0617-5. Acesso em: 07 nov. 2024.
    • APA

      Flores, J. L., Javaloyes, M. A., & Piccione, P. (2011). Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, 267( 1-2), 221-233. doi:10.1007/s00209-009-0617-5
    • NLM

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00209-009-0617-5
    • Vancouver

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00209-009-0617-5
  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALIAS, Luis J. e PICCIONE, Paolo. On the manifold structure of the set of unparameterized embeddings with low regularity. Bulletin of the Brazilian Mathematical Society, v. 42, n. 2, p. 171-183, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00574-011-0009-4. Acesso em: 07 nov. 2024.
    • APA

      Alias, L. J., & Piccione, P. (2011). On the manifold structure of the set of unparameterized embeddings with low regularity. Bulletin of the Brazilian Mathematical Society, 42( 2), 171-183. doi:10.1007/s00574-011-0009-4
    • NLM

      Alias LJ, Piccione P. On the manifold structure of the set of unparameterized embeddings with low regularity [Internet]. Bulletin of the Brazilian Mathematical Society. 2011 ; 42( 2): 171-183.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00574-011-0009-4
    • Vancouver

      Alias LJ, Piccione P. On the manifold structure of the set of unparameterized embeddings with low regularity [Internet]. Bulletin of the Brazilian Mathematical Society. 2011 ; 42( 2): 171-183.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00574-011-0009-4
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: GEOMETRIA SIMPLÉTICA, GEODÉSIA, PROBLEMAS VARIACIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Angel e PICCIONE, Paolo. Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index. Pacific Journal of Mathematics, v. 243, n. 1, p. 43-56, 2009Tradução . . Disponível em: https://doi.org/10.2140/pjm.2009.243.43. Acesso em: 07 nov. 2024.
    • APA

      Javaloyes, M. A., & Piccione, P. (2009). Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index. Pacific Journal of Mathematics, 243( 1), 43-56. doi:10.2140/pjm.2009.243.43
    • NLM

      Javaloyes MA, Piccione P. Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index [Internet]. Pacific Journal of Mathematics. 2009 ; 243( 1): 43-56.[citado 2024 nov. 07 ] Available from: https://doi.org/10.2140/pjm.2009.243.43
    • Vancouver

      Javaloyes MA, Piccione P. Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index [Internet]. Pacific Journal of Mathematics. 2009 ; 243( 1): 43-56.[citado 2024 nov. 07 ] Available from: https://doi.org/10.2140/pjm.2009.243.43
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, v. 287, n. 3, p. 903-923, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00220-009-0742-3. Acesso em: 07 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2009). Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, 287( 3), 903-923. doi:10.1007/s00220-009-0742-3
    • NLM

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
  • Source: Communications in Analysis and Geometry. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIOTTI, Leonardo e MERCURI, Francesco e PICCIONE, Paolo. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes. Communications in Analysis and Geometry, v. 16, n. 2, p. 333-393, 2008Tradução . . Disponível em: https://doi.org/10.4310/CAG.2008.v16.n2.a3. Acesso em: 07 nov. 2024.
    • APA

      Biliotti, L., Mercuri, F., & Piccione, P. (2008). On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes. Communications in Analysis and Geometry, 16( 2), 333-393. doi:10.4310/CAG.2008.v16.n2.a3
    • NLM

      Biliotti L, Mercuri F, Piccione P. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes [Internet]. Communications in Analysis and Geometry. 2008 ; 16( 2): 333-393.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4310/CAG.2008.v16.n2.a3
    • Vancouver

      Biliotti L, Mercuri F, Piccione P. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes [Internet]. Communications in Analysis and Geometry. 2008 ; 16( 2): 333-393.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4310/CAG.2008.v16.n2.a3
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Angel e LIMA, Levi Lopes de e PICCIONE, Paolo. Iteration of closed geodesics in stationary Lorentzian manifolds. Mathematische Zeitschrift, v. 260, n. 2, p. 277-303, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00209-007-0274-5. Acesso em: 07 nov. 2024.
    • APA

      Javaloyes, M. A., Lima, L. L. de, & Piccione, P. (2008). Iteration of closed geodesics in stationary Lorentzian manifolds. Mathematische Zeitschrift, 260( 2), 277-303. doi:10.1007/s00209-007-0274-5
    • NLM

      Javaloyes MA, Lima LL de, Piccione P. Iteration of closed geodesics in stationary Lorentzian manifolds [Internet]. Mathematische Zeitschrift. 2008 ; 260( 2): 277-303.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00209-007-0274-5
    • Vancouver

      Javaloyes MA, Lima LL de, Piccione P. Iteration of closed geodesics in stationary Lorentzian manifolds [Internet]. Mathematische Zeitschrift. 2008 ; 260( 2): 277-303.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00209-007-0274-5
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Angel e PICCIONE, Paolo. Spectral flow and iteration of closed semi-Riemannian geodesics. Calculus of Variations and Partial Differential Equations, v. 33, n. 4, p. 439-462, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00526-008-0170-9. Acesso em: 07 nov. 2024.
    • APA

      Javaloyes, M. A., & Piccione, P. (2008). Spectral flow and iteration of closed semi-Riemannian geodesics. Calculus of Variations and Partial Differential Equations, 33( 4), 439-462. doi:10.1007/s00526-008-0170-9
    • NLM

      Javaloyes MA, Piccione P. Spectral flow and iteration of closed semi-Riemannian geodesics [Internet]. Calculus of Variations and Partial Differential Equations. 2008 ; 33( 4): 439-462.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-008-0170-9
    • Vancouver

      Javaloyes MA, Piccione P. Spectral flow and iteration of closed semi-Riemannian geodesics [Internet]. Calculus of Variations and Partial Differential Equations. 2008 ; 33( 4): 439-462.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-008-0170-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024