Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres (2013)
Source: Calculus of Variations and Partial Differential Equations. Unidade: IME
Assunto: CÁLCULO DE VARIAÇÕES
ABNT
BETTIOL, Renato G e PICCIONE, Paolo. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, v. 47, n. 3-4, p. 789-807, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00526-012-0535-y. Acesso em: 07 nov. 2024.APA
Bettiol, R. G., & Piccione, P. (2013). Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calculus of Variations and Partial Differential Equations, 47( 3-4), 789-807. doi:10.1007/s00526-012-0535-yNLM
Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-012-0535-yVancouver
Bettiol RG, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [Internet]. Calculus of Variations and Partial Differential Equations. 2013 ; 47( 3-4): 789-807.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-012-0535-y