Multiple brake orbits and homoclinics in Riemannian manifolds (2011)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1007/s00205-010-0371-1
- Assunto: GEODÉSIA GEOMÉTRICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Archive for Rational Mechanics and Analysis
- ISSN: 0003-9527
- Volume/Número/Paginação/Ano: v. 200, n. 2, p. 691-724, 2011
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, v. 200, n. 2, p. 691-724, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00205-010-0371-1. Acesso em: 21 jan. 2026. -
APA
Giambó, R., Giannoni, F., & Piccione, P. (2011). Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, 200( 2), 691-724. doi:10.1007/s00205-010-0371-1 -
NLM
Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00205-010-0371-1 -
Vancouver
Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00205-010-0371-1 - A Morse theory for massive particles and photons in general relativity
- On the normal exponential map in singular conformal metrics
- Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles
- Periodic trajectories of dynamical systems having a one-parameter group of symmetries
- Stability and bifurcation for surfaces with constant mean curvature
- Maslov index in semi-Riemannian submersions
- Spectral flow and iteration of closed semi-Riemannian geodesics
- On the Omori-Yau maximum principle in Riemannian submersions
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
Informações sobre o DOI: 10.1007/s00205-010-0371-1 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
