Stability and bifurcation for surfaces with constant mean curvature (2017)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.2969/jmsj/06941519
- Subjects: PROBLEMAS VARIACIONAIS; SUPERFÍCIES MÍNIMAS; ANÁLISE GLOBAL
- Keywords: bifurcation; constant mean curvature surfaces; stability
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of the Mathematical Society of Japan
- ISSN: 0025-5645
- Volume/Número/Paginação/Ano: v. 69, n. 4, p.1519-1554, 2017
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: unspecified-oa
-
ABNT
KOISO, Miyuki e PALMER, Bennett e PICCIONE, Paolo. Stability and bifurcation for surfaces with constant mean curvature. Journal of the Mathematical Society of Japan, v. 69, n. 4, p. 1519-1554, 2017Tradução . . Disponível em: https://doi.org/10.2969/jmsj/06941519. Acesso em: 10 jan. 2026. -
APA
Koiso, M., Palmer, B., & Piccione, P. (2017). Stability and bifurcation for surfaces with constant mean curvature. Journal of the Mathematical Society of Japan, 69( 4), 1519-1554. doi:10.2969/jmsj/06941519 -
NLM
Koiso M, Palmer B, Piccione P. Stability and bifurcation for surfaces with constant mean curvature [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1519-1554.[citado 2026 jan. 10 ] Available from: https://doi.org/10.2969/jmsj/06941519 -
Vancouver
Koiso M, Palmer B, Piccione P. Stability and bifurcation for surfaces with constant mean curvature [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1519-1554.[citado 2026 jan. 10 ] Available from: https://doi.org/10.2969/jmsj/06941519 - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Informações sobre o DOI: 10.2969/jmsj/06941519 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2862000.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
