On the manifold structure of the set of unparameterized embeddings with low regularity (2011)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1007/s00574-011-0009-4
- Assunto: GEOMETRIA DIFERENCIAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Bulletin of the Brazilian Mathematical Society
- ISSN: 1678-7544
- Volume/Número/Paginação/Ano: v. 42, n. 2, p. 171-183, 2011
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ALIAS, Luis J. e PICCIONE, Paolo. On the manifold structure of the set of unparameterized embeddings with low regularity. Bulletin of the Brazilian Mathematical Society, v. 42, n. 2, p. 171-183, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00574-011-0009-4. Acesso em: 22 jan. 2026. -
APA
Alias, L. J., & Piccione, P. (2011). On the manifold structure of the set of unparameterized embeddings with low regularity. Bulletin of the Brazilian Mathematical Society, 42( 2), 171-183. doi:10.1007/s00574-011-0009-4 -
NLM
Alias LJ, Piccione P. On the manifold structure of the set of unparameterized embeddings with low regularity [Internet]. Bulletin of the Brazilian Mathematical Society. 2011 ; 42( 2): 171-183.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s00574-011-0009-4 -
Vancouver
Alias LJ, Piccione P. On the manifold structure of the set of unparameterized embeddings with low regularity [Internet]. Bulletin of the Brazilian Mathematical Society. 2011 ; 42( 2): 171-183.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s00574-011-0009-4 - A Morse theory for massive particles and photons in general relativity
- On the normal exponential map in singular conformal metrics
- Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles
- Periodic trajectories of dynamical systems having a one-parameter group of symmetries
- Stability and bifurcation for surfaces with constant mean curvature
- Maslov index in semi-Riemannian submersions
- Spectral flow and iteration of closed semi-Riemannian geodesics
- On the Omori-Yau maximum principle in Riemannian submersions
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
Informações sobre o DOI: 10.1007/s00574-011-0009-4 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
