Filtros : "MATERIAIS" "Elsevier" Removido: "Itália" Limpar

Filtros



Refine with date range


  • Source: Open Ceramics. Unidade: EESC

    Subjects: REFRATÁRIOS, ECONOMIA DE ENERGIA, MATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALOMÃO, Rafael e FERNANDES, Leandro e SIMÃO, Luiz Carlos. Novel microporous MgO-based high-temperature thermal insulator. Open Ceramics, v. 16, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.oceram.2023.100446. Acesso em: 18 jul. 2024.
    • APA

      Salomão, R., Fernandes, L., & Simão, L. C. (2023). Novel microporous MgO-based high-temperature thermal insulator. Open Ceramics, 16, 1-10. doi:10.1016/j.oceram.2023.100446
    • NLM

      Salomão R, Fernandes L, Simão LC. Novel microporous MgO-based high-temperature thermal insulator [Internet]. Open Ceramics. 2023 ; 16 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.oceram.2023.100446
    • Vancouver

      Salomão R, Fernandes L, Simão LC. Novel microporous MgO-based high-temperature thermal insulator [Internet]. Open Ceramics. 2023 ; 16 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.oceram.2023.100446
  • Source: Catalysis Communications. Unidades: EESC, IFSC

    Subjects: VIDRO, FRUTOSE, TECNOLOGIA DE MICRO-ONDAS, MATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Maria José Fonseca et al. Highly porous niobium-containing silica glasses applied to the microwave-assisted conversion of fructose into HMF. Catalysis Communications, v. 174, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.catcom.2022.106577. Acesso em: 18 jul. 2024.
    • APA

      Costa, M. J. F., Gonçalves, A. A. dos S., Rinaldi, R., Bradtmüller, H., Eckert, H., & Ferreira, E. B. (2023). Highly porous niobium-containing silica glasses applied to the microwave-assisted conversion of fructose into HMF. Catalysis Communications, 174, 1-10. doi:10.1016/j.catcom.2022.106577
    • NLM

      Costa MJF, Gonçalves AA dos S, Rinaldi R, Bradtmüller H, Eckert H, Ferreira EB. Highly porous niobium-containing silica glasses applied to the microwave-assisted conversion of fructose into HMF [Internet]. Catalysis Communications. 2023 ; 174 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.catcom.2022.106577
    • Vancouver

      Costa MJF, Gonçalves AA dos S, Rinaldi R, Bradtmüller H, Eckert H, Ferreira EB. Highly porous niobium-containing silica glasses applied to the microwave-assisted conversion of fructose into HMF [Internet]. Catalysis Communications. 2023 ; 174 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.catcom.2022.106577
  • Source: Nuclear Materials And Energy. Unidade: EEL

    Subjects: MATERIAIS, RECRISTALIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZILNYK, K. D. e SUZUKI, Paulo Atsushi e SANDIM, Hugo Ricardo Zschommler. Subtle microstructural changes during prolonged annealing of ODS-Eurofer steel. Nuclear Materials And Energy, v. 35, p. 1-10 , 2023Tradução . . Disponível em: https://doi.org/10.1016/j.nme.2023.101450. Acesso em: 18 jul. 2024.
    • APA

      Zilnyk, K. D., Suzuki, P. A., & Sandim, H. R. Z. (2023). Subtle microstructural changes during prolonged annealing of ODS-Eurofer steel. Nuclear Materials And Energy, 35, 1-10 . doi:10.1016/j.nme.2023.101450
    • NLM

      Zilnyk KD, Suzuki PA, Sandim HRZ. Subtle microstructural changes during prolonged annealing of ODS-Eurofer steel [Internet]. Nuclear Materials And Energy. 2023 ;35 1-10 .[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.nme.2023.101450
    • Vancouver

      Zilnyk KD, Suzuki PA, Sandim HRZ. Subtle microstructural changes during prolonged annealing of ODS-Eurofer steel [Internet]. Nuclear Materials And Energy. 2023 ;35 1-10 .[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.nme.2023.101450
  • Source: Journal of Materials Research and Technology. Unidade: EESC

    Subjects: OXIDAÇÃO, MUDANÇA DE FASE, LIGAS METÁLICAS, MATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PASSOS, João Gabriel da Cruz et al. Ferritic layers formation mechanism during oxidation of FeMnSiCrNi alloys: Effect of temperature and influence on oxidation behavior. Journal of Materials Research and Technology, v. 27, p. 1281-1292, 2023Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmrt.2023.10.026. Acesso em: 18 jul. 2024.
    • APA

      Passos, J. G. da C., Freitas, B. X. de, Silva, R. da, Della Rovere, C. A., Magnabosco, R., Oliveira, M. F. de, & Malafaia, A. M. de S. (2023). Ferritic layers formation mechanism during oxidation of FeMnSiCrNi alloys: Effect of temperature and influence on oxidation behavior. Journal of Materials Research and Technology, 27, 1281-1292. doi:10.1016/j.jmrt.2023.10.026
    • NLM

      Passos JG da C, Freitas BX de, Silva R da, Della Rovere CA, Magnabosco R, Oliveira MF de, Malafaia AM de S. Ferritic layers formation mechanism during oxidation of FeMnSiCrNi alloys: Effect of temperature and influence on oxidation behavior [Internet]. Journal of Materials Research and Technology. 2023 ; 27 1281-1292.[citado 2024 jul. 18 ] Available from: http://dx.doi.org/10.1016/j.jmrt.2023.10.026
    • Vancouver

      Passos JG da C, Freitas BX de, Silva R da, Della Rovere CA, Magnabosco R, Oliveira MF de, Malafaia AM de S. Ferritic layers formation mechanism during oxidation of FeMnSiCrNi alloys: Effect of temperature and influence on oxidation behavior [Internet]. Journal of Materials Research and Technology. 2023 ; 27 1281-1292.[citado 2024 jul. 18 ] Available from: http://dx.doi.org/10.1016/j.jmrt.2023.10.026
  • Source: Materials characterization. Unidade: EEL

    Subjects: AÇO INOXIDÁVEL AUSTENÍTICO, AÇO INOXIDÁVEL DUPLEX, MATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Cristiane Fátima Guimarães Silveira et al. Austenite reversion in lean duplex steel: Microstructural, dilatometric and magnetic characterization. Materials characterization, v. 195, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.matchar.2022.112509. Acesso em: 18 jul. 2024.
    • APA

      Mota, C. F. G. S., Aota, L. S., Sandim, H. R. Z., Zilnyk, K. D., & Sandim, M. J. R. (2023). Austenite reversion in lean duplex steel: Microstructural, dilatometric and magnetic characterization. Materials characterization, 195, 1-12. doi:10.1016/j.matchar.2022.112509
    • NLM

      Mota CFGS, Aota LS, Sandim HRZ, Zilnyk KD, Sandim MJR. Austenite reversion in lean duplex steel: Microstructural, dilatometric and magnetic characterization [Internet]. Materials characterization. 2023 ;195 1-12.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matchar.2022.112509
    • Vancouver

      Mota CFGS, Aota LS, Sandim HRZ, Zilnyk KD, Sandim MJR. Austenite reversion in lean duplex steel: Microstructural, dilatometric and magnetic characterization [Internet]. Materials characterization. 2023 ;195 1-12.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matchar.2022.112509
  • Source: International journal of refractory metals & hard materials. Unidade: EEL

    Subjects: MOLIBDÊNIO, MATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA FILHO, Isnaldi Rodrigues de et al. Strain-rate effects on the recrystallization of molybdenum-based MZ17 alloy. International journal of refractory metals & hard materials, v. 112, p. 1-8, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ijrmhm.2023.106124. Acesso em: 18 jul. 2024.
    • APA

      Souza Filho, I. R. de, Knabl, W., Kestler, H., & Sandim, H. R. Z. (2023). Strain-rate effects on the recrystallization of molybdenum-based MZ17 alloy. International journal of refractory metals & hard materials, 112, 1-8. doi:10.1016/j.ijrmhm.2023.106124
    • NLM

      Souza Filho IR de, Knabl W, Kestler H, Sandim HRZ. Strain-rate effects on the recrystallization of molybdenum-based MZ17 alloy [Internet]. International journal of refractory metals & hard materials. 2023 ;112 1-8.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.ijrmhm.2023.106124
    • Vancouver

      Souza Filho IR de, Knabl W, Kestler H, Sandim HRZ. Strain-rate effects on the recrystallization of molybdenum-based MZ17 alloy [Internet]. International journal of refractory metals & hard materials. 2023 ;112 1-8.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.ijrmhm.2023.106124
  • Unidade: IFSC

    Subjects: FILMES FINOS, PROPRIEDADES DOS MATERIAIS, MATERIAIS, POLÍMEROS (MATERIAIS)

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Perovskite ceramics: recent advances and emerging applications. . Amsterdam: Elsevier. Disponível em: https://www.elsevier.com/books/perovskite-ceramics/huaman/978-0-323-90586-2. Acesso em: 18 jul. 2024. , 2023
    • APA

      Perovskite ceramics: recent advances and emerging applications. (2023). Perovskite ceramics: recent advances and emerging applications. Amsterdam: Elsevier. Recuperado de https://www.elsevier.com/books/perovskite-ceramics/huaman/978-0-323-90586-2
    • NLM

      Perovskite ceramics: recent advances and emerging applications [Internet]. 2023 ;[citado 2024 jul. 18 ] Available from: https://www.elsevier.com/books/perovskite-ceramics/huaman/978-0-323-90586-2
    • Vancouver

      Perovskite ceramics: recent advances and emerging applications [Internet]. 2023 ;[citado 2024 jul. 18 ] Available from: https://www.elsevier.com/books/perovskite-ceramics/huaman/978-0-323-90586-2
  • Source: Corrosion science. Unidade: EEL

    Subjects: MATERIAIS, LIGAS METÁLICAS, TITÂNIO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, L.M. et al. Oxidation behavior of STA β-21S alloy and variants [Ti-xNb-yMo-5.6Al-0.5Si at%; x+y=9.5]. Corrosion science, v. 203, n. 110342, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.corsci.2022.110342. Acesso em: 18 jul. 2024.
    • APA

      Ferreira, L. M., Chaia, N., Coelho, G. C., & Nunes, C. A. (2022). Oxidation behavior of STA β-21S alloy and variants [Ti-xNb-yMo-5.6Al-0.5Si at%; x+y=9.5]. Corrosion science, 203( 110342), 1-10. doi:10.1016/j.corsci.2022.110342
    • NLM

      Ferreira LM, Chaia N, Coelho GC, Nunes CA. Oxidation behavior of STA β-21S alloy and variants [Ti-xNb-yMo-5.6Al-0.5Si at%; x+y=9.5] [Internet]. Corrosion science. 2022 ;203( 110342): 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.corsci.2022.110342
    • Vancouver

      Ferreira LM, Chaia N, Coelho GC, Nunes CA. Oxidation behavior of STA β-21S alloy and variants [Ti-xNb-yMo-5.6Al-0.5Si at%; x+y=9.5] [Internet]. Corrosion science. 2022 ;203( 110342): 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.corsci.2022.110342
  • Source: SSRN Electronic Journals: The English & Commonwealth Law Abstracts Journal.

    Assunto: MATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIORANI, Jean Marc et al. New Approach to the Compound Energy Formalism (Nacef)Part Ii. Thermodynamic Modelling of the Al-Nb System Supported by First-Principles Calculations. SSRN Electronic Journals: The English & Commonwealth Law Abstracts Journal, v. 80, n. 102522, p. 1-14, 2022Tradução . . Disponível em: https://doi.org/10.2139/ssrn.4141217. Acesso em: 18 jul. 2024.
    • APA

      Fiorani, J. M., Badran, M., Joubert, J. M., Crivello, J. C., Silva, A. A. A. P., Coelho, G. C., et al. (2022). New Approach to the Compound Energy Formalism (Nacef)Part Ii. Thermodynamic Modelling of the Al-Nb System Supported by First-Principles Calculations. SSRN Electronic Journals: The English & Commonwealth Law Abstracts Journal, 80( 102522), 1-14. doi:10.2139/ssrn.4141217
    • NLM

      Fiorani JM, Badran M, Joubert JM, Crivello JC, Silva AAAP, Coelho GC, Nunes CA, David N, Vilasi M. New Approach to the Compound Energy Formalism (Nacef)Part Ii. Thermodynamic Modelling of the Al-Nb System Supported by First-Principles Calculations [Internet]. SSRN Electronic Journals: The English & Commonwealth Law Abstracts Journal. 2022 ;80( 102522): 1-14.[citado 2024 jul. 18 ] Available from: https://doi.org/10.2139/ssrn.4141217
    • Vancouver

      Fiorani JM, Badran M, Joubert JM, Crivello JC, Silva AAAP, Coelho GC, Nunes CA, David N, Vilasi M. New Approach to the Compound Energy Formalism (Nacef)Part Ii. Thermodynamic Modelling of the Al-Nb System Supported by First-Principles Calculations [Internet]. SSRN Electronic Journals: The English & Commonwealth Law Abstracts Journal. 2022 ;80( 102522): 1-14.[citado 2024 jul. 18 ] Available from: https://doi.org/10.2139/ssrn.4141217
  • Source: Carbohydrate Polymer Technologies and Applications. Unidade: EESC

    Subjects: POLÍMEROS (MATERIAIS), BIOMASSA, EMBALAGENS, MATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Gustavo de et al. Synthesis and characterization of nanofibrilated cellulose films modified with blocked isocyanates in aqueous media and their barrier properties to water vapor and oxygen. Carbohydrate Polymer Technologies and Applications, v. 4, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.carpta.2022.100249. Acesso em: 18 jul. 2024.
    • APA

      Souza, G. de, Belgacem, M. N., Gandini, A., & Carvalho, A. J. F. (2022). Synthesis and characterization of nanofibrilated cellulose films modified with blocked isocyanates in aqueous media and their barrier properties to water vapor and oxygen. Carbohydrate Polymer Technologies and Applications, 4, 1-10. doi:10.1016/j.carpta.2022.100249
    • NLM

      Souza G de, Belgacem MN, Gandini A, Carvalho AJF. Synthesis and characterization of nanofibrilated cellulose films modified with blocked isocyanates in aqueous media and their barrier properties to water vapor and oxygen [Internet]. Carbohydrate Polymer Technologies and Applications. 2022 ; 4 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.carpta.2022.100249
    • Vancouver

      Souza G de, Belgacem MN, Gandini A, Carvalho AJF. Synthesis and characterization of nanofibrilated cellulose films modified with blocked isocyanates in aqueous media and their barrier properties to water vapor and oxygen [Internet]. Carbohydrate Polymer Technologies and Applications. 2022 ; 4 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.carpta.2022.100249
  • Source: Chemosphere. Unidade: EESC

    Subjects: BIOMASSA, BIOMATERIAIS, BIODEGRADAÇÃO, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABE, Mateus Manabu et al. Production and assessment of the biodegradation and ecotoxicity of xylanand starch-based bioplastics. Chemosphere, v. 287, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.chemosphere.2021.132290. Acesso em: 18 jul. 2024.
    • APA

      Abe, M. M., Branciforti, M. C., Montagnolli, R. N., Morales, M. A. M., Jacobus, A. P., & Brienzo, M. (2022). Production and assessment of the biodegradation and ecotoxicity of xylanand starch-based bioplastics. Chemosphere, 287, 1-10. doi:10.1016/j.chemosphere.2021.132290
    • NLM

      Abe MM, Branciforti MC, Montagnolli RN, Morales MAM, Jacobus AP, Brienzo M. Production and assessment of the biodegradation and ecotoxicity of xylanand starch-based bioplastics [Internet]. Chemosphere. 2022 ; 287 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.chemosphere.2021.132290
    • Vancouver

      Abe MM, Branciforti MC, Montagnolli RN, Morales MAM, Jacobus AP, Brienzo M. Production and assessment of the biodegradation and ecotoxicity of xylanand starch-based bioplastics [Internet]. Chemosphere. 2022 ; 287 1-10.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.chemosphere.2021.132290
  • Source: Journal of alloys and compounds. Unidade: EEL

    Subjects: MATERIAIS, ESTRUTURA DOS MATERIAIS, PROPRIEDADES DOS MATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Denis Felipe de et al. Liquidus projection of the Al-Cr-V system. Journal of alloys and compounds, v. 899, n. 163258, p. 1-7, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jallcom.2021.163258. Acesso em: 18 jul. 2024.
    • APA

      Barros, D. F. de, Santos, J. C. P. dos, Abreu, D. A. de, Silva, A. A. A. P., Borowski, K. E., Chaia, N., et al. (2022). Liquidus projection of the Al-Cr-V system. Journal of alloys and compounds, 899( 163258), 1-7. doi:10.1016/j.jallcom.2021.163258
    • NLM

      Barros DF de, Santos JCP dos, Abreu DA de, Silva AAAP, Borowski KE, Chaia N, Nunes CA, Coelho GC. Liquidus projection of the Al-Cr-V system [Internet]. Journal of alloys and compounds. 2022 ;899( 163258): 1-7.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.jallcom.2021.163258
    • Vancouver

      Barros DF de, Santos JCP dos, Abreu DA de, Silva AAAP, Borowski KE, Chaia N, Nunes CA, Coelho GC. Liquidus projection of the Al-Cr-V system [Internet]. Journal of alloys and compounds. 2022 ;899( 163258): 1-7.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.jallcom.2021.163258
  • Source: International Journal of Pressure Vessels and Piping. Unidade: EESC

    Subjects: FADIGA DOS MATERIAIS, CORROSÃO DOS MATERIAIS, ETANOL, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Elielson Alves dos et al. Stress corrosion cracking and corrosion fatigue analysis of API X70 steel exposed to a circulating ethanol environment. International Journal of Pressure Vessels and Piping, v. 200, p. 1-12, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ijpvp.2022.104846. Acesso em: 18 jul. 2024.
    • APA

      Santos, E. A. dos, Giorgetti, V., Souza Junior, C. A. de, Marcomini, J. B., Sordi, V. L., & Rovere, C. A. D. (2022). Stress corrosion cracking and corrosion fatigue analysis of API X70 steel exposed to a circulating ethanol environment. International Journal of Pressure Vessels and Piping, 200, 1-12. doi:10.1016/j.ijpvp.2022.104846
    • NLM

      Santos EA dos, Giorgetti V, Souza Junior CA de, Marcomini JB, Sordi VL, Rovere CAD. Stress corrosion cracking and corrosion fatigue analysis of API X70 steel exposed to a circulating ethanol environment [Internet]. International Journal of Pressure Vessels and Piping. 2022 ; 200 1-12.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.ijpvp.2022.104846
    • Vancouver

      Santos EA dos, Giorgetti V, Souza Junior CA de, Marcomini JB, Sordi VL, Rovere CAD. Stress corrosion cracking and corrosion fatigue analysis of API X70 steel exposed to a circulating ethanol environment [Internet]. International Journal of Pressure Vessels and Piping. 2022 ; 200 1-12.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.ijpvp.2022.104846
  • Source: International Journal of Fatigue. Unidade: EESC

    Subjects: LIGAS METÁLICAS, FADIGA DOS MATERIAIS, CORROSÃO DOS MATERIAIS, AERONÁUTICA, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAVALCANTE, Thiago Roberto Felisardo et al. Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments. International Journal of Fatigue, v. 154, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ijfatigue.2021.106519. Acesso em: 18 jul. 2024.
    • APA

      Cavalcante, T. R. F., Pereira, G. S., Koga, G. Y., Bolfarini, C., Bose Filho, W. W., & Ávila Diaz, J. A. (2022). Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments. International Journal of Fatigue, 154, 1-13. doi:10.1016/j.ijfatigue.2021.106519
    • NLM

      Cavalcante TRF, Pereira GS, Koga GY, Bolfarini C, Bose Filho WW, Ávila Diaz JA. Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments [Internet]. International Journal of Fatigue. 2022 ; 154 1-13.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.ijfatigue.2021.106519
    • Vancouver

      Cavalcante TRF, Pereira GS, Koga GY, Bolfarini C, Bose Filho WW, Ávila Diaz JA. Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments [Internet]. International Journal of Fatigue. 2022 ; 154 1-13.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.ijfatigue.2021.106519
  • Source: Materials letters. Unidade: EEL

    Subjects: NIÓBIO, MATERIAIS, LIGAS METÁLICAS, ALUMÍNIO, TITÂNIO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES JUNIOR, José Mauro de et al. A multi-principal element alloy combining high specific strength and good ductility. Materials letters, v. 325, n. 132905-5, p. 1-5, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.matlet.2022.132905. Acesso em: 18 jul. 2024.
    • APA

      Moraes Junior, J. M. de, Chaia, N., Cotton, J. D., Coelho, G. C., & Nunes, C. A. (2022). A multi-principal element alloy combining high specific strength and good ductility. Materials letters, 325( 132905-5), 1-5. doi:10.1016/j.matlet.2022.132905
    • NLM

      Moraes Junior JM de, Chaia N, Cotton JD, Coelho GC, Nunes CA. A multi-principal element alloy combining high specific strength and good ductility [Internet]. Materials letters. 2022 ;325( 132905-5): 1-5.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matlet.2022.132905
    • Vancouver

      Moraes Junior JM de, Chaia N, Cotton JD, Coelho GC, Nunes CA. A multi-principal element alloy combining high specific strength and good ductility [Internet]. Materials letters. 2022 ;325( 132905-5): 1-5.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matlet.2022.132905
  • Source: Materials Chemistry and Physics. Unidade: EESC

    Subjects: TITÂNIO, CRISTALIZAÇÃO, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALLEGARI, Bruna et al. New aspects of globularization crystallography and dynamic phase evolution during thermomechanical processing of Ti–6Al–4V alloy. Materials Chemistry and Physics, v. 276, p. 1-14, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.matchemphys.2021.125388. Acesso em: 18 jul. 2024.
    • APA

      Callegari, B., Oliveira, joão P., Coelho, R. S., Brito, P. P., Schell, N., Soldera, F., et al. (2022). New aspects of globularization crystallography and dynamic phase evolution during thermomechanical processing of Ti–6Al–4V alloy. Materials Chemistry and Physics, 276, 1-14. doi:10.1016/j.matchemphys.2021.125388
    • NLM

      Callegari B, Oliveira joão P, Coelho RS, Brito PP, Schell N, Soldera F, Mücklich F, Pinto HC. New aspects of globularization crystallography and dynamic phase evolution during thermomechanical processing of Ti–6Al–4V alloy [Internet]. Materials Chemistry and Physics. 2022 ; 276 1-14.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.125388
    • Vancouver

      Callegari B, Oliveira joão P, Coelho RS, Brito PP, Schell N, Soldera F, Mücklich F, Pinto HC. New aspects of globularization crystallography and dynamic phase evolution during thermomechanical processing of Ti–6Al–4V alloy [Internet]. Materials Chemistry and Physics. 2022 ; 276 1-14.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.125388
  • Source: Industrial Crops and Products. Unidade: EESC

    Subjects: PAINÉIS, MATERIAIS NANOESTRUTURADOS, MATERIAIS COMPÓSITOS, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHIROMITO, Emanoele Maria Santos e TROVATTI, Eliane e CARVALHO, Antonio Jose Felix. Thermoformable fiberboards of wood pulp and nanofibrillated cellulose. Industrial Crops and Products, v. 187, p. 1-7, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.indcrop.2022.115433. Acesso em: 18 jul. 2024.
    • APA

      Chiromito, E. M. S., Trovatti, E., & Carvalho, A. J. F. (2022). Thermoformable fiberboards of wood pulp and nanofibrillated cellulose. Industrial Crops and Products, 187, 1-7. doi:10.1016/j.indcrop.2022.115433
    • NLM

      Chiromito EMS, Trovatti E, Carvalho AJF. Thermoformable fiberboards of wood pulp and nanofibrillated cellulose [Internet]. Industrial Crops and Products. 2022 ; 187 1-7.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.indcrop.2022.115433
    • Vancouver

      Chiromito EMS, Trovatti E, Carvalho AJF. Thermoformable fiberboards of wood pulp and nanofibrillated cellulose [Internet]. Industrial Crops and Products. 2022 ; 187 1-7.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.indcrop.2022.115433
  • Source: Additive Manufacturing. Unidade: EESC

    Subjects: EXTRUSÃO, MANUFATURA ADITIVA, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUSTINO NETTO, Joaquim Manoel et al. Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unit. Additive Manufacturing, v. 59, p. 1-14, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.addma.2022.103192. Acesso em: 18 jul. 2024.
    • APA

      Justino Netto, J. M., Sarout, A. I., Santos, A. L. G., Lucas, A. de A., Chinelatto, M. A., Alves, jorge L., et al. (2022). Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unit. Additive Manufacturing, 59, 1-14. doi:10.1016/j.addma.2022.103192
    • NLM

      Justino Netto JM, Sarout AI, Santos ALG, Lucas A de A, Chinelatto MA, Alves jorge L, Cunha AG, Covas JA, Silveira Z de. Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unit [Internet]. Additive Manufacturing. 2022 ; 59 1-14.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.addma.2022.103192
    • Vancouver

      Justino Netto JM, Sarout AI, Santos ALG, Lucas A de A, Chinelatto MA, Alves jorge L, Cunha AG, Covas JA, Silveira Z de. Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unit [Internet]. Additive Manufacturing. 2022 ; 59 1-14.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.addma.2022.103192
  • Source: Journal of Sound and Vibration. Unidade: EESC

    Subjects: MATERIAIS, PIEZOELETRICIDADE, VIBRAÇÕES, ENGENHARIA AERONÁUTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      THOMES, Renan Lima e MOSQUERA SÁNCHEZ, Jaime Alberto e DE MARQUI JÚNIOR, Carlos. Bandgap widening by optimized disorder in one-dimensional locally resonant piezoelectric metamaterials. Journal of Sound and Vibration, v. 512, p. 1-15, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jsv.2021.116369. Acesso em: 18 jul. 2024.
    • APA

      Thomes, R. L., Mosquera Sánchez, J. A., & De Marqui Júnior, C. (2021). Bandgap widening by optimized disorder in one-dimensional locally resonant piezoelectric metamaterials. Journal of Sound and Vibration, 512, 1-15. doi:10.1016/j.jsv.2021.116369
    • NLM

      Thomes RL, Mosquera Sánchez JA, De Marqui Júnior C. Bandgap widening by optimized disorder in one-dimensional locally resonant piezoelectric metamaterials [Internet]. Journal of Sound and Vibration. 2021 ; 512 1-15.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.jsv.2021.116369
    • Vancouver

      Thomes RL, Mosquera Sánchez JA, De Marqui Júnior C. Bandgap widening by optimized disorder in one-dimensional locally resonant piezoelectric metamaterials [Internet]. Journal of Sound and Vibration. 2021 ; 512 1-15.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.jsv.2021.116369
  • Source: Materials Chemistry and Physics. Unidade: EESC

    Subjects: MATERIAIS, MAGNÉSIO, TERRAS RARAS, CORROSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Gualter Silva et al. Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, v. 272, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.matchemphys.2021.124930. Acesso em: 18 jul. 2024.
    • APA

      Pereira, G. S., Koga, G. Y., Ávila Diaz, J. A., Bittencourt, I. M., Fernandez, F., Miyazaki, M. Y., et al. (2021). Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, 272, 1-12. doi:10.1016/j.matchemphys.2021.124930
    • NLM

      Pereira GS, Koga GY, Ávila Diaz JA, Bittencourt IM, Fernandez F, Miyazaki MY, Botta WJ, Bose Filho WW. Corrosion resistance of WE43 Mg alloy in sodium chloride solution [Internet]. Materials Chemistry and Physics. 2021 ; 272 1-12.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.124930
    • Vancouver

      Pereira GS, Koga GY, Ávila Diaz JA, Bittencourt IM, Fernandez F, Miyazaki MY, Botta WJ, Bose Filho WW. Corrosion resistance of WE43 Mg alloy in sodium chloride solution [Internet]. Materials Chemistry and Physics. 2021 ; 272 1-12.[citado 2024 jul. 18 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.124930

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024