A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NASCIMENTO, Natália Santos do et al. Enzymes for dermatological use. Experimental Dermatology, v. 33, p. 1-20, 2024Tradução . . Disponível em: https://dx.doi.org/10.1111/exd.15008. Acesso em: 16 nov. 2024.
APA
Nascimento, N. S. do, Obreque, K. M. T., Oliveira, C. A. de, Cunha, J. R., Baby, A. R., Long, P. F., et al. (2024). Enzymes for dermatological use. Experimental Dermatology, 33, 1-20. doi:10.1111/exd.15008
NLM
Nascimento NS do, Obreque KMT, Oliveira CA de, Cunha JR, Baby AR, Long PF, Young AR, Rangel-Yagui C de O. Enzymes for dermatological use [Internet]. Experimental Dermatology. 2024 ; 33 1-20.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.1111/exd.15008
Vancouver
Nascimento NS do, Obreque KMT, Oliveira CA de, Cunha JR, Baby AR, Long PF, Young AR, Rangel-Yagui C de O. Enzymes for dermatological use [Internet]. Experimental Dermatology. 2024 ; 33 1-20.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.1111/exd.15008
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CUCICK, Ana Clara Candelaria et al. Effect of fruit by-products and orange pectin on folate (vitamin B9) production by selected starter and probiotic strains. International Journal of Food Science and Technology, v. 59, n. 6, p. 3929-3938, 2024Tradução . . Disponível em: https://dx.doi.org/10.1111/ijfs.17141. Acesso em: 16 nov. 2024.
APA
Cucick, A. C. C., Bedani, R., Ribeiro, L. S., Franco, B. D. G. de M., & Saad, S. M. I. (2024). Effect of fruit by-products and orange pectin on folate (vitamin B9) production by selected starter and probiotic strains. International Journal of Food Science and Technology, 59( 6), 3929-3938. doi:10.1111/ijfs.17141
NLM
Cucick ACC, Bedani R, Ribeiro LS, Franco BDG de M, Saad SMI. Effect of fruit by-products and orange pectin on folate (vitamin B9) production by selected starter and probiotic strains [Internet]. International Journal of Food Science and Technology. 2024 ; 59( 6): 3929-3938.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.1111/ijfs.17141
Vancouver
Cucick ACC, Bedani R, Ribeiro LS, Franco BDG de M, Saad SMI. Effect of fruit by-products and orange pectin on folate (vitamin B9) production by selected starter and probiotic strains [Internet]. International Journal of Food Science and Technology. 2024 ; 59( 6): 3929-3938.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.1111/ijfs.17141
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CUCICK, Ana Clara Candelaria et al. Integrating fruit by-products and whey for the design of folate-bioenriched innovative fermented beverages safe for human consumption. International Journal of Food Microbiology, v. 425, p. 1-15 art. 110895, 2024Tradução . . Disponível em: https://dx.doi.org/10.1016/j.ijfoodmicro.2024.110895. Acesso em: 16 nov. 2024.
APA
Cucick, A. C. C., Obermaier, L., Frota, E. G., Suzuki, J. Y., Nascimento, K. R., Fabi, J. P., et al. (2024). Integrating fruit by-products and whey for the design of folate-bioenriched innovative fermented beverages safe for human consumption. International Journal of Food Microbiology, 425, 1-15 art. 110895. doi:10.1016/j.ijfoodmicro.2024.110895
NLM
Cucick ACC, Obermaier L, Frota EG, Suzuki JY, Nascimento KR, Fabi JP, Rychlik M, Franco BDG de M, Saad SMI. Integrating fruit by-products and whey for the design of folate-bioenriched innovative fermented beverages safe for human consumption [Internet]. International Journal of Food Microbiology. 2024 ; 425 1-15 art. 110895.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.1016/j.ijfoodmicro.2024.110895
Vancouver
Cucick ACC, Obermaier L, Frota EG, Suzuki JY, Nascimento KR, Fabi JP, Rychlik M, Franco BDG de M, Saad SMI. Integrating fruit by-products and whey for the design of folate-bioenriched innovative fermented beverages safe for human consumption [Internet]. International Journal of Food Microbiology. 2024 ; 425 1-15 art. 110895.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.1016/j.ijfoodmicro.2024.110895
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BROERING, Milena Fronza et al. Development of Ac2-26 mesoporous microparticle system as a potential therapeutic agent for inflammatory bowel diseases. International Journal of Nanomedicine, v. 19, p. 3537–3554, 2024Tradução . . Disponível em: https://dx.doi.org/10.2147/IJN.S451589. Acesso em: 16 nov. 2024.
APA
Broering, M. F., Oseliero Filho, P. L., Borges, P. P., Silva, L. C. C. da, Knirsch, M. C., Xavier, L. F., et al. (2024). Development of Ac2-26 mesoporous microparticle system as a potential therapeutic agent for inflammatory bowel diseases. International Journal of Nanomedicine, 19, 3537–3554. doi:10.2147/IJN.S451589
NLM
Broering MF, Oseliero Filho PL, Borges PP, Silva LCC da, Knirsch MC, Xavier LF, Scharf PR dos S, Sandri S, Stephano MA, Oliveira FA de, Sayed IM, Gamarra LF, Das S, Fantini MC de A, Farsky SHP. Development of Ac2-26 mesoporous microparticle system as a potential therapeutic agent for inflammatory bowel diseases [Internet]. International Journal of Nanomedicine. 2024 ; 19 3537–3554.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.2147/IJN.S451589
Vancouver
Broering MF, Oseliero Filho PL, Borges PP, Silva LCC da, Knirsch MC, Xavier LF, Scharf PR dos S, Sandri S, Stephano MA, Oliveira FA de, Sayed IM, Gamarra LF, Das S, Fantini MC de A, Farsky SHP. Development of Ac2-26 mesoporous microparticle system as a potential therapeutic agent for inflammatory bowel diseases [Internet]. International Journal of Nanomedicine. 2024 ; 19 3537–3554.[citado 2024 nov. 16 ] Available from: https://dx.doi.org/10.2147/IJN.S451589
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
VIVAS, Cristofher Victor et al. Biochemical response of human endothelial and fibroblast cells to silver nanoparticles. BioNanoScience, v. 13, n. 12, p. 502-520, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12668-023-01091-4. Acesso em: 16 nov. 2024.
APA
Vivas, C. V., Santos, J. A. dos, Barreto, Y. B., Toma, S. H., Santos, J. J. dos, Stephano, M. A., et al. (2023). Biochemical response of human endothelial and fibroblast cells to silver nanoparticles. BioNanoScience, 13( 12), 502-520. doi:10.1007/s12668-023-01091-4
NLM
Vivas CV, Santos JA dos, Barreto YB, Toma SH, Santos JJ dos, Stephano MA, Oliveira CLP de, Araki K, Alencar AM, Bloise Júnior AC. Biochemical response of human endothelial and fibroblast cells to silver nanoparticles [Internet]. BioNanoScience. 2023 ; 13( 12): 502-520.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/s12668-023-01091-4
Vancouver
Vivas CV, Santos JA dos, Barreto YB, Toma SH, Santos JJ dos, Stephano MA, Oliveira CLP de, Araki K, Alencar AM, Bloise Júnior AC. Biochemical response of human endothelial and fibroblast cells to silver nanoparticles [Internet]. BioNanoScience. 2023 ; 13( 12): 502-520.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1007/s12668-023-01091-4
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANTOS, Bruna Bertoloni dos et al. Algae materials for cosmetics and cosmeceuticals. Algae Materials: Applications Benefitting Health. Tradução . Amsterdam: Academic Press, 2023. . . Acesso em: 16 nov. 2024.
APA
Santos, B. B. dos, Morocho-Jácome, A. L., Prieto , Z. A., Morowvat, M. H., Lima, F. V., Velasco, M. V. R., et al. (2023). Algae materials for cosmetics and cosmeceuticals. In Algae Materials: Applications Benefitting Health. Amsterdam: Academic Press.
NLM
Santos BB dos, Morocho-Jácome AL, Prieto ZA, Morowvat MH, Lima FV, Velasco MVR, Carvalho JCM de, Baby AR. Algae materials for cosmetics and cosmeceuticals. In: Algae Materials: Applications Benefitting Health. Amsterdam: Academic Press; 2023. [citado 2024 nov. 16 ]
Vancouver
Santos BB dos, Morocho-Jácome AL, Prieto ZA, Morowvat MH, Lima FV, Velasco MVR, Carvalho JCM de, Baby AR. Algae materials for cosmetics and cosmeceuticals. In: Algae Materials: Applications Benefitting Health. Amsterdam: Academic Press; 2023. [citado 2024 nov. 16 ]
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BIASOTO, Henrique Pellin et al. Extracellular expression of Saccharomyces cerevisiae’s L-asparaginase II in Pichia pastoris results in novelenzyme with better parameters. Preparative Biochemistry Biotechnology, v. 53, n. 5, p. 511–522, 2023Tradução . . Disponível em: https://doi.org/10.1080/10826068.2022.2111582. Acesso em: 16 nov. 2024.
APA
Biasoto, H. P., Hebeda, C. B., Farsky, S. H. P., Pessoa Junior, A., Silva, T. A. da C. e, & Monteiro, G. (2023). Extracellular expression of Saccharomyces cerevisiae’s L-asparaginase II in Pichia pastoris results in novelenzyme with better parameters. Preparative Biochemistry Biotechnology, 53( 5), 511–522. doi:10.1080/10826068.2022.2111582
NLM
Biasoto HP, Hebeda CB, Farsky SHP, Pessoa Junior A, Silva TA da C e, Monteiro G. Extracellular expression of Saccharomyces cerevisiae’s L-asparaginase II in Pichia pastoris results in novelenzyme with better parameters [Internet]. Preparative Biochemistry Biotechnology. 2023 ; 53( 5): 511–522.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/10826068.2022.2111582
Vancouver
Biasoto HP, Hebeda CB, Farsky SHP, Pessoa Junior A, Silva TA da C e, Monteiro G. Extracellular expression of Saccharomyces cerevisiae’s L-asparaginase II in Pichia pastoris results in novelenzyme with better parameters [Internet]. Preparative Biochemistry Biotechnology. 2023 ; 53( 5): 511–522.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/10826068.2022.2111582
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PEREIRA, Wellison Amorim et al. Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens. Scientifc Reports, v. 12, p. 1-14 art. 5530, 2022Tradução . . Disponível em: https://doi.org/10.1038/s41598-022-09263-0. Acesso em: 16 nov. 2024.
APA
Pereira, W. A., Piazentin, A. C. M., Oliveira, R. C. de, Mendonça, C. M. N., Tabata, Y. A., Mendes, M. A., et al. (2022). Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens. Scientifc Reports, 12, 1-14 art. 5530. doi:10.1038/s41598-022-09263-0
NLM
Pereira WA, Piazentin ACM, Oliveira RC de, Mendonça CMN, Tabata YA, Mendes MA, Fock RA, Makiyama EN, Corrêa B, Vallejo M, Villalobos EF, Oliveira RP de S. Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens [Internet]. Scientifc Reports. 2022 ; 12 1-14 art. 5530.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1038/s41598-022-09263-0
Vancouver
Pereira WA, Piazentin ACM, Oliveira RC de, Mendonça CMN, Tabata YA, Mendes MA, Fock RA, Makiyama EN, Corrêa B, Vallejo M, Villalobos EF, Oliveira RP de S. Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens [Internet]. Scientifc Reports. 2022 ; 12 1-14 art. 5530.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1038/s41598-022-09263-0
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CUCICK, Ana Clara Candelaria et al. Food by-products as substrates for growth and folate production by commercial probiotic strains. 2022, Anais.. Amsterdam: Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 2022. Disponível em: https://www.BeneficialMicrobes2022.org. Acesso em: 16 nov. 2024.
APA
Cucick, A. C. C., Suzuki, J. Y., Obermaier, L., Franco, B. D. G. de M., Rychlik, M., & Saad, S. M. I. (2022). Food by-products as substrates for growth and folate production by commercial probiotic strains. In Abstracts. Amsterdam: Faculdade de Ciências Farmacêuticas, Universidade de São Paulo. Recuperado de https://www.BeneficialMicrobes2022.org
NLM
Cucick ACC, Suzuki JY, Obermaier L, Franco BDG de M, Rychlik M, Saad SMI. Food by-products as substrates for growth and folate production by commercial probiotic strains [Internet]. Abstracts. 2022 ;[citado 2024 nov. 16 ] Available from: https://www.BeneficialMicrobes2022.org
Vancouver
Cucick ACC, Suzuki JY, Obermaier L, Franco BDG de M, Rychlik M, Saad SMI. Food by-products as substrates for growth and folate production by commercial probiotic strains [Internet]. Abstracts. 2022 ;[citado 2024 nov. 16 ] Available from: https://www.BeneficialMicrobes2022.org
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
KUNIYOSHI, Taís Mayumi et al. Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse. Bioresource Technology, v. 338, p. 1-12 art. 125565, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2021.125565. Acesso em: 16 nov. 2024.
APA
Kuniyoshi, T. M., Mendonça, C. M. N., Vieira, V. B., Robl, D., Franco, B. D. G. de M., Todorov, S. D., et al. (2021). Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse. Bioresource Technology, 338, 1-12 art. 125565. doi:10.1016/j.biortech.2021.125565
NLM
Kuniyoshi TM, Mendonça CMN, Vieira VB, Robl D, Franco BDG de M, Todorov SD, Tomé E, O\2019Connor PM, Converti A, Araújo WL de, Vasconcellos LPSP, Varani A de M, Cotter PD, Rabelo SC, Oliveira RP de S. Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse [Internet]. Bioresource Technology. 2021 ; 338 1-12 art. 125565.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.biortech.2021.125565
Vancouver
Kuniyoshi TM, Mendonça CMN, Vieira VB, Robl D, Franco BDG de M, Todorov SD, Tomé E, O\2019Connor PM, Converti A, Araújo WL de, Vasconcellos LPSP, Varani A de M, Cotter PD, Rabelo SC, Oliveira RP de S. Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse [Internet]. Bioresource Technology. 2021 ; 338 1-12 art. 125565.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.biortech.2021.125565