Filtros : "INTELIGÊNCIA ARTIFICIAL" "Hruschka Junior, Estevam Rafael" Removidos: "IFSC888" "Peru" "Waitzberg, Dan Linetzky" Limpar

Filtros



Refine with date range


  • Source: Information Sciences. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, APRENDIZADO COMPUTACIONAL, MÍDIAS SOCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Nádia Felix Felipe da et al. Using unsupervised information to improve semi-supervised tweet sentiment classification. Information Sciences, v. 355, p. 348-365, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2016.02.002. Acesso em: 05 nov. 2024.
    • APA

      Silva, N. F. F. da, Coletta, L. F. S., Hruschka, E. R., & Hruschka Junior, E. R. (2016). Using unsupervised information to improve semi-supervised tweet sentiment classification. Information Sciences, 355, 348-365. doi:10.1016/j.ins.2016.02.002
    • NLM

      Silva NFF da, Coletta LFS, Hruschka ER, Hruschka Junior ER. Using unsupervised information to improve semi-supervised tweet sentiment classification [Internet]. Information Sciences. 2016 ; 355 348-365.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.ins.2016.02.002
    • Vancouver

      Silva NFF da, Coletta LFS, Hruschka ER, Hruschka Junior ER. Using unsupervised information to improve semi-supervised tweet sentiment classification [Internet]. Information Sciences. 2016 ; 355 348-365.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.ins.2016.02.002
  • Source: Proceedings. Conference titles: International Workshop on Semantic Evaluation - SemEval. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, WEB SEMÂNTICA, MÍDIAS SOCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Nádia Felix Felipe da e HRUSCHKA, Eduardo Raul e HRUSCHKA JUNIOR, Estevam Rafael. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble. 2014, Anais.. Stroudsburg: ACL, 2014. Disponível em: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf. Acesso em: 05 nov. 2024.
    • APA

      Silva, N. F. F. da, Hruschka, E. R., & Hruschka Junior, E. R. (2014). Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble. In Proceedings. Stroudsburg: ACL. Recuperado de http://www.aclweb.org/anthology/S/S14/S14-2017.pdf
    • NLM

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble [Internet]. Proceedings. 2014 ;[citado 2024 nov. 05 ] Available from: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf
    • Vancouver

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble [Internet]. Proceedings. 2014 ;[citado 2024 nov. 05 ] Available from: http://www.aclweb.org/anthology/S/S14/S14-2017.pdf
  • Source: Proceedings. Conference titles: Brazilian Conference on Intelligent Systems - BRACIS. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, RECONHECIMENTO DE PADRÕES, WEB SEMÂNTICA, MÍDIAS SOCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLETTA, Luiz Fernando Sommaggio et al. Combining classification and clustering for tweet sentiment analysis. 2014, Anais.. Los Alamitos: Conference Publishing Services, 2014. Disponível em: https://doi.org/10.1109/BRACIS.2014.46. Acesso em: 05 nov. 2024.
    • APA

      Coletta, L. F. S., Silva, N. F. F. da, Hruschka, E. R., & Hruschka Junior, E. R. (2014). Combining classification and clustering for tweet sentiment analysis. In Proceedings. Los Alamitos: Conference Publishing Services. doi:10.1109/BRACIS.2014.46
    • NLM

      Coletta LFS, Silva NFF da, Hruschka ER, Hruschka Junior ER. Combining classification and clustering for tweet sentiment analysis [Internet]. Proceedings. 2014 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1109/BRACIS.2014.46
    • Vancouver

      Coletta LFS, Silva NFF da, Hruschka ER, Hruschka Junior ER. Combining classification and clustering for tweet sentiment analysis [Internet]. Proceedings. 2014 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1109/BRACIS.2014.46
  • Source: Decision Support Systems. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Nádia Felix Felipe da e HRUSCHKA, Eduardo Raul e HRUSCHKA JUNIOR, Estevam Rafael. Tweet sentiment analysis with classifier ensembles. Decision Support Systems, v. 66, p. 170-179, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.dss.2014.07.003. Acesso em: 05 nov. 2024.
    • APA

      Silva, N. F. F. da, Hruschka, E. R., & Hruschka Junior, E. R. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 66, 170-179. doi:10.1016/j.dss.2014.07.003
    • NLM

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Tweet sentiment analysis with classifier ensembles [Internet]. Decision Support Systems. 2014 ; 66 170-179.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.dss.2014.07.003
    • Vancouver

      Silva NFF da, Hruschka ER, Hruschka Junior ER. Tweet sentiment analysis with classifier ensembles [Internet]. Decision Support Systems. 2014 ; 66 170-179.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.dss.2014.07.003
  • Source: Fundamenta Informaticae. Unidade: IFSC

    Subjects: PROGRAMAÇÃO LÓGICA, INTELIGÊNCIA ARTIFICIAL, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NICOLETTI, M. C. e LISBOA, Flávia Oliveira Santos de Sá e HRUSCHKA JUNIOR, Estevam Rafael. Automatic learning of temporal relations under the closed world assumption. Fundamenta Informaticae, v. 124, n. 1/2, p. 133-151, 2013Tradução . . Disponível em: https://doi.org/10.3233/FI-2013-828. Acesso em: 05 nov. 2024.
    • APA

      Nicoletti, M. C., Lisboa, F. O. S. de S., & Hruschka Junior, E. R. (2013). Automatic learning of temporal relations under the closed world assumption. Fundamenta Informaticae, 124( 1/2), 133-151. doi:10.3233/FI-2013-828
    • NLM

      Nicoletti MC, Lisboa FOS de S, Hruschka Junior ER. Automatic learning of temporal relations under the closed world assumption [Internet]. Fundamenta Informaticae. 2013 ; 124( 1/2): 133-151.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3233/FI-2013-828
    • Vancouver

      Nicoletti MC, Lisboa FOS de S, Hruschka Junior ER. Automatic learning of temporal relations under the closed world assumption [Internet]. Fundamenta Informaticae. 2013 ; 124( 1/2): 133-151.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3233/FI-2013-828
  • Source: Proceedings. Conference titles: International Conference on Intelligent Systems Design and Applications - ISDA. Unidade: IFSC

    Subjects: INTELIGÊNCIA ARTIFICIAL, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NICOLETTI, M. C. et al. Representation and automatic learning of temporal relations between time periods with uncertain boundaries. 2012, Anais.. Piscataway: Institute of Eletrical and Eletronic Engineer - IEEE, 2012. Disponível em: https://doi.org/10.1109/ISDA.2012.6416579. Acesso em: 05 nov. 2024.
    • APA

      Nicoletti, M. C., Lisboa, F. O. S. de S., Hruschka Junior, E. R., & Oliveira, O. L. (2012). Representation and automatic learning of temporal relations between time periods with uncertain boundaries. In Proceedings. Piscataway: Institute of Eletrical and Eletronic Engineer - IEEE. doi:10.1109/ISDA.2012.6416579
    • NLM

      Nicoletti MC, Lisboa FOS de S, Hruschka Junior ER, Oliveira OL. Representation and automatic learning of temporal relations between time periods with uncertain boundaries [Internet]. Proceedings. 2012 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1109/ISDA.2012.6416579
    • Vancouver

      Nicoletti MC, Lisboa FOS de S, Hruschka Junior ER, Oliveira OL. Representation and automatic learning of temporal relations between time periods with uncertain boundaries [Internet]. Proceedings. 2012 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1109/ISDA.2012.6416579
  • Source: Intelligent Data Analysis : an International Journal. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Edimilson Batista dos et al. Bayesian network classifiers: beyond classification accuracy. Intelligent Data Analysis : an International Journal, v. 15, n. 3, p. 279-298, 2011Tradução . . Disponível em: https://doi.org/10.3233/IDA-2010-0468. Acesso em: 05 nov. 2024.
    • APA

      Santos, E. B. dos, Hruschka Junior, E. R., Hruschka, E. R., & Ebecken, N. F. F. (2011). Bayesian network classifiers: beyond classification accuracy. Intelligent Data Analysis : an International Journal, 15( 3), 279-298. doi:10.3233/IDA-2010-0468
    • NLM

      Santos EB dos, Hruschka Junior ER, Hruschka ER, Ebecken NFF. Bayesian network classifiers: beyond classification accuracy [Internet]. Intelligent Data Analysis : an International Journal. 2011 ;15( 3): 279-298.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3233/IDA-2010-0468
    • Vancouver

      Santos EB dos, Hruschka Junior ER, Hruschka ER, Ebecken NFF. Bayesian network classifiers: beyond classification accuracy [Internet]. Intelligent Data Analysis : an International Journal. 2011 ;15( 3): 279-298.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3233/IDA-2010-0468
  • Source: Journal of Computational Methods in Sciences and Engineering. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HRUSCHKA JUNIOR, Estevam Rafael e HRUSCHKA, Eduardo Raul e EBECKEN, Nelson Francisco Favilla. A Bayesian imputation method for a clustering genetic algorithm. Journal of Computational Methods in Sciences and Engineering, v. 11, n. 4, p. 173-183, 2011Tradução . . Disponível em: https://doi.org/10.3233/JCM-2011-0362. Acesso em: 05 nov. 2024.
    • APA

      Hruschka Junior, E. R., Hruschka, E. R., & Ebecken, N. F. F. (2011). A Bayesian imputation method for a clustering genetic algorithm. Journal of Computational Methods in Sciences and Engineering, 11( 4), 173-183. doi:10.3233/JCM-2011-0362
    • NLM

      Hruschka Junior ER, Hruschka ER, Ebecken NFF. A Bayesian imputation method for a clustering genetic algorithm [Internet]. Journal of Computational Methods in Sciences and Engineering. 2011 ; 11( 4): 173-183.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3233/JCM-2011-0362
    • Vancouver

      Hruschka Junior ER, Hruschka ER, Ebecken NFF. A Bayesian imputation method for a clustering genetic algorithm [Internet]. Journal of Computational Methods in Sciences and Engineering. 2011 ; 11( 4): 173-183.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3233/JCM-2011-0362
  • Source: Communications in Computer and Information Science. Conference titles: International Conference on Integrated Computing Technology - INTECH. Unidade: IFSC

    Subjects: MODELAGEM DE DADOS, BANCO DE DADOS TEMPORAIS, INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NICOLETTI, Maria do Carmo e LISBOA, Flávia Oliveira Santos de Sá e HRUSCHKA JUNIOR, Estevam Rafael. Learning temporal interval relations using inductive logic programming. Communications in Computer and Information Science. Heidelberg: Springer. Disponível em: https://doi.org/10.1007/978-3-642-22247-4_8. Acesso em: 05 nov. 2024. , 2011
    • APA

      Nicoletti, M. do C., Lisboa, F. O. S. de S., & Hruschka Junior, E. R. (2011). Learning temporal interval relations using inductive logic programming. Communications in Computer and Information Science. Heidelberg: Springer. doi:10.1007/978-3-642-22247-4_8
    • NLM

      Nicoletti M do C, Lisboa FOS de S, Hruschka Junior ER. Learning temporal interval relations using inductive logic programming [Internet]. Communications in Computer and Information Science. 2011 ; 165 90-104.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/978-3-642-22247-4_8
    • Vancouver

      Nicoletti M do C, Lisboa FOS de S, Hruschka Junior ER. Learning temporal interval relations using inductive logic programming [Internet]. Communications in Computer and Information Science. 2011 ; 165 90-104.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/978-3-642-22247-4_8
  • Source: Proceedings. Conference titles: IEEE World Congress on Computational Intelligence - WCCI. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Edimilson Batista dos et al. A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms. 2010, Anais.. Piscataway: Institute of Electrical and Electronics Engineers - IEEE, 2010. Disponível em: https://doi.org/10.1109/CEC.2010.5586049. Acesso em: 05 nov. 2024.
    • APA

      Santos, E. B. dos, Hruschka Junior, E. R., Hruschka, E. R., & Ebecken, N. F. F. (2010). A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms. In Proceedings. Piscataway: Institute of Electrical and Electronics Engineers - IEEE. doi:10.1109/CEC.2010.5586049
    • NLM

      Santos EB dos, Hruschka Junior ER, Hruschka ER, Ebecken NFF. A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms [Internet]. Proceedings. 2010 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1109/CEC.2010.5586049
    • Vancouver

      Santos EB dos, Hruschka Junior ER, Hruschka ER, Ebecken NFF. A distance-based mutation operator for learning bayesian network structures using evolutionary algorithms [Internet]. Proceedings. 2010 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1109/CEC.2010.5586049
  • Source: Journal of Experimental & Theoretical Artificial Intelligence. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HRUSCHKA, Eduardo Raul et al. On the influence of imputation in classification: practical issues. Journal of Experimental & Theoretical Artificial Intelligence, v. 21, n. 1, p. 43 - 58, 2009Tradução . . Disponível em: https://doi.org/10.1080/09528130802246602. Acesso em: 05 nov. 2024.
    • APA

      Hruschka, E. R., Garcia, A. J. T., Hruschka Junior, E. R., & Ebecken, N. F. F. (2009). On the influence of imputation in classification: practical issues. Journal of Experimental & Theoretical Artificial Intelligence, 21( 1), 43 - 58. doi:10.1080/09528130802246602
    • NLM

      Hruschka ER, Garcia AJT, Hruschka Junior ER, Ebecken NFF. On the influence of imputation in classification: practical issues [Internet]. Journal of Experimental & Theoretical Artificial Intelligence. 2009 ; 21( 1): 43 - 58.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/09528130802246602
    • Vancouver

      Hruschka ER, Garcia AJT, Hruschka Junior ER, Ebecken NFF. On the influence of imputation in classification: practical issues [Internet]. Journal of Experimental & Theoretical Artificial Intelligence. 2009 ; 21( 1): 43 - 58.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/09528130802246602

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024