Filtros : "Rússia (antiga URSS) - Federação Russa" "IAMBARTSEV, ANATOLI" Removido: "Siberian Mathematical Journal" Limpar

Filtros



Limitar por data


  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assuntos: PROCESSOS DE NASCIMENTO E MORTE, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, PROCESSOS DE DIFUSÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, v. 29, n. 4, p. 605-618, 2024Tradução . . Disponível em: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Logachova, O., Pechersky, E., Presman, E., & Iambartsev, A. (2024). Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, 29( 4), 605-618. doi:10.61102/1024-2953-mprf.2023.29.4.007
    • NLM

      Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2024 nov. 01 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007
    • Vancouver

      Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2024 nov. 01 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, GRANDES DESVIOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. Processes with catastrophes: large deviation point of view. Stochastic Processes and their Applications, v. 176, n. artigo 104447, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104447. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2024). Processes with catastrophes: large deviation point of view. Stochastic Processes and their Applications, 176( artigo 104447), 1-19. doi:10.1016/j.spa.2024.104447
    • NLM

      Logachov A, Logachova O, Yambartsev A. Processes with catastrophes: large deviation point of view [Internet]. Stochastic Processes and their Applications. 2024 ; 176( artigo 104447): 1-19.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.spa.2024.104447
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. Processes with catastrophes: large deviation point of view [Internet]. Stochastic Processes and their Applications. 2024 ; 176( artigo 104447): 1-19.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.spa.2024.104447
  • Fonte: RAIRO - Operations Research. Unidade: IME

    Assuntos: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERDA-HERNÁNDEZ, Jose Javier e LOGACHOV, Artem e YAMBARTSEV, Anatoli. Bid-ask spread dynamics: large upward jump with geometric catastrophes. RAIRO - Operations Research, v. 58, n. 2, p. 1375-1399, 2024Tradução . . Disponível em: https://doi.org/10.1051/ro/2024039. Acesso em: 01 nov. 2024.
    • APA

      Cerda-Hernández, J. J., Logachov, A., & Yambartsev, A. (2024). Bid-ask spread dynamics: large upward jump with geometric catastrophes. RAIRO - Operations Research, 58( 2), 1375-1399. doi:10.1051/ro/2024039
    • NLM

      Cerda-Hernández JJ, Logachov A, Yambartsev A. Bid-ask spread dynamics: large upward jump with geometric catastrophes [Internet]. RAIRO - Operations Research. 2024 ; 58( 2): 1375-1399.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1051/ro/2024039
    • Vancouver

      Cerda-Hernández JJ, Logachov A, Yambartsev A. Bid-ask spread dynamics: large upward jump with geometric catastrophes [Internet]. RAIRO - Operations Research. 2024 ; 58( 2): 1375-1399.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1051/ro/2024039
  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene e PRESMAN, Ernst L'vovich e IAMBARTSEV, Anatoli. Sojourn times of Markov symmetric processes in continuous time. Markov Processes And Related Fields, v. 29, n. 2, p. 199-224, 2023Tradução . . Disponível em: https://math-mprf.org/journal/articles/id1666/. Acesso em: 01 nov. 2024.
    • APA

      Pechersky, E., Presman, E. L. 'vovich, & Iambartsev, A. (2023). Sojourn times of Markov symmetric processes in continuous time. Markov Processes And Related Fields, 29( 2), 199-224. Recuperado de https://math-mprf.org/journal/articles/id1666/
    • NLM

      Pechersky E, Presman EL'vovich, Iambartsev A. Sojourn times of Markov symmetric processes in continuous time [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 199-224.[citado 2024 nov. 01 ] Available from: https://math-mprf.org/journal/articles/id1666/
    • Vancouver

      Pechersky E, Presman EL'vovich, Iambartsev A. Sojourn times of Markov symmetric processes in continuous time [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 199-224.[citado 2024 nov. 01 ] Available from: https://math-mprf.org/journal/articles/id1666/
  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. V. et al. Excursions of Markov processes: a large deviation approach. Markov Processes And Related Fields, v. 29, n. 2, p. 189-197, 2023Tradução . . Disponível em: https://math-mprf.org/journal/articles/id1665/. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A. V., Mogulsky, A. A., Suhov, Y. M., & Iambartsev, A. (2023). Excursions of Markov processes: a large deviation approach. Markov Processes And Related Fields, 29( 2), 189-197. Recuperado de https://math-mprf.org/journal/articles/id1665/
    • NLM

      Logachov AV, Mogulsky AA, Suhov YM, Iambartsev A. Excursions of Markov processes: a large deviation approach [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 189-197.[citado 2024 nov. 01 ] Available from: https://math-mprf.org/journal/articles/id1665/
    • Vancouver

      Logachov AV, Mogulsky AA, Suhov YM, Iambartsev A. Excursions of Markov processes: a large deviation approach [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 189-197.[citado 2024 nov. 01 ] Available from: https://math-mprf.org/journal/articles/id1665/
  • Fonte: Journal of Applied Probability. Unidade: IME

    Assuntos: GRANDES DESVIOS, PROCESSOS DE MARKOV

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. A large-deviation principle for birth–death processes with a linear rate of downward jumps. Journal of Applied Probability, 2023Tradução . . Disponível em: https://doi.org/10.1017/jpr.2023.75. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Suhov, Y., Vvedenskaya, N., & Iambartsev, A. (2023). A large-deviation principle for birth–death processes with a linear rate of downward jumps. Journal of Applied Probability. doi:10.1017/jpr.2023.75
    • NLM

      Logachov A, Suhov Y, Vvedenskaya N, Iambartsev A. A large-deviation principle for birth–death processes with a linear rate of downward jumps [Internet]. Journal of Applied Probability. 2023 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1017/jpr.2023.75
    • Vancouver

      Logachov A, Suhov Y, Vvedenskaya N, Iambartsev A. A large-deviation principle for birth–death processes with a linear rate of downward jumps [Internet]. Journal of Applied Probability. 2023 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.1017/jpr.2023.75
  • Fonte: Mathematics. Unidade: IME

    Assuntos: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROJAS, Helder e LOGACHOV, Artem e IAMBARTSEV, Anatoli. Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime. Mathematics, v. 11, n. artigo 4235, p. 1-24, 2023Tradução . . Disponível em: https://doi.org/10.3390/math11204235. Acesso em: 01 nov. 2024.
    • APA

      Rojas, H., Logachov, A., & Iambartsev, A. (2023). Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime. Mathematics, 11( artigo 4235), 1-24. doi:10.3390/math11204235
    • NLM

      Rojas H, Logachov A, Iambartsev A. Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime [Internet]. Mathematics. 2023 ; 11( artigo 4235): 1-24.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3390/math11204235
    • Vancouver

      Rojas H, Logachov A, Iambartsev A. Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime [Internet]. Mathematics. 2023 ; 11( artigo 4235): 1-24.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3390/math11204235
  • Fonte: ESAIM: Probability and Statistics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. e MOGULSKII, Anatolii e IAMBARTSEV, Anatoli. Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition. ESAIM: Probability and Statistics, v. 26, p. 152-170, 2022Tradução . . Disponível em: https://doi.org/10.1051/ps/2022002. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Mogulskii, A., & Iambartsev, A. (2022). Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition. ESAIM: Probability and Statistics, 26, 152-170. doi:10.1051/ps/2022002
    • NLM

      Logachov A, Mogulskii A, Iambartsev A. Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition [Internet]. ESAIM: Probability and Statistics. 2022 ; 26 152-170.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1051/ps/2022002
    • Vancouver

      Logachov A, Mogulskii A, Iambartsev A. Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition [Internet]. ESAIM: Probability and Statistics. 2022 ; 26 152-170.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1051/ps/2022002
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: GRANDES DESVIOS, TEOREMAS LIMITES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, v. 137, p. 149-166, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2021.03.011. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Mogulskii, A., Prokopenko, E. I., & Yambartsev, A. (2021). Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, 137, 149-166. doi:10.1016/j.spa.2021.03.011
    • NLM

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
    • Vancouver

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
  • Fonte: Reports on Mathematical Physics. Unidade: IME

    Assuntos: PROCESSOS DE MARKOV, GRANDES DESVIOS, BURACOS NEGROS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene e PIROGOV, Sergei e YAMBARTSEV, Anatoli. Hawking-Penrose black hole model. Large lmission regime. Reports on Mathematical Physics, v. 87, n. 1, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/S0034-4877(21)00007-0. Acesso em: 01 nov. 2024.
    • APA

      Pechersky, E., Pirogov, S., & Yambartsev, A. (2021). Hawking-Penrose black hole model. Large lmission regime. Reports on Mathematical Physics, 87( 1), 1-14. doi:10.1016/S0034-4877(21)00007-0
    • NLM

      Pechersky E, Pirogov S, Yambartsev A. Hawking-Penrose black hole model. Large lmission regime [Internet]. Reports on Mathematical Physics. 2021 ; 87( 1): 1-14.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/S0034-4877(21)00007-0
    • Vancouver

      Pechersky E, Pirogov S, Yambartsev A. Hawking-Penrose black hole model. Large lmission regime [Internet]. Reports on Mathematical Physics. 2021 ; 87( 1): 1-14.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/S0034-4877(21)00007-0
  • Fonte: Journal of Mathematical Physics. Unidade: IME

    Assuntos: MECÂNICA ESTATÍSTICA, MATERIAIS MAGNÉTICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Roberto et al. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, v. 62, n. artigo 103301, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1063/5.0020757. Acesso em: 01 nov. 2024.
    • APA

      Fernández, R., González-Navarrete, M., Pechersky, E., & Yambartsev, A. (2021). Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, 62( artigo 103301), 1-13. doi:10.1063/5.0020757
    • NLM

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1063/5.0020757
    • Vancouver

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1063/5.0020757
  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, GRANDES DESVIOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. The local principle of large deviations for compound Poisson process with catastrophes. Brazilian Journal of Probability and Statistics, v. 35, n. 2, p. 205-223, 2021Tradução . . Disponível em: https://doi.org/10.1214/20-BJPS472. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2021). The local principle of large deviations for compound Poisson process with catastrophes. Brazilian Journal of Probability and Statistics, 35( 2), 205-223. doi:10.1214/20-BJPS472
    • NLM

      Logachov A, Logachova O, Yambartsev A. The local principle of large deviations for compound Poisson process with catastrophes [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 2): 205-223.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1214/20-BJPS472
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. The local principle of large deviations for compound Poisson process with catastrophes [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 2): 205-223.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1214/20-BJPS472
  • Fonte: Siberian Electronic Mathematical Reports. Unidade: IME

    Assuntos: GRANDES DESVIOS, ESTATÍSTICAS VITAIS (BIOESTATÍSTICA)

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem Vasilhevic et al. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, v. 17, p. 1258-1269, 2020Tradução . . Disponível em: https://doi.org/10.33048/semi.2020.17.092. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A. V., Suhov, Y. M., Vvedenskaya, N. D., & Iambartsev, A. (2020). A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, 17, 1258-1269. doi:10.33048/semi.2020.17.092
    • NLM

      Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2024 nov. 01 ] Available from: https://doi.org/10.33048/semi.2020.17.092
    • Vancouver

      Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2024 nov. 01 ] Available from: https://doi.org/10.33048/semi.2020.17.092
  • Fonte: Stochastics and Dynamics. Unidade: IME

    Assuntos: PROCESSOS DE MARKOV, MEDIDA DE WIENER

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. e LOGACHOVA, Olga e IAMBARTSEV, Anatoli. Local large deviation principle for Wiener process with random resetting. Stochastics and Dynamics, v. 20, n. 5, 2020Tradução . . Disponível em: https://doi.org/10.1142/s021949372050032x. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Logachova, O., & Iambartsev, A. (2020). Local large deviation principle for Wiener process with random resetting. Stochastics and Dynamics, 20( 5). doi:10.1142/s021949372050032x
    • NLM

      Logachov A, Logachova O, Iambartsev A. Local large deviation principle for Wiener process with random resetting [Internet]. Stochastics and Dynamics. 2020 ; 20( 5):[citado 2024 nov. 01 ] Available from: https://doi.org/10.1142/s021949372050032x
    • Vancouver

      Logachov A, Logachova O, Iambartsev A. Local large deviation principle for Wiener process with random resetting [Internet]. Stochastics and Dynamics. 2020 ; 20( 5):[citado 2024 nov. 01 ] Available from: https://doi.org/10.1142/s021949372050032x
  • Fonte: Markov Processes And Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. V et al. Local limits for string of frozen characters. Markov Processes And Related Fields, v. 26, n. 5, p. 885-900, 2020Tradução . . Disponível em: http://math-mprf.org/journal/articles/id1599/. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A. V., Mogulsky, A. A., Prokopenko, E. I., & Iambartsev, A. (2020). Local limits for string of frozen characters. Markov Processes And Related Fields, 26( 5), 885-900. Recuperado de http://math-mprf.org/journal/articles/id1599/
    • NLM

      Logachov AV, Mogulsky AA, Prokopenko EI, Iambartsev A. Local limits for string of frozen characters [Internet]. Markov Processes And Related Fields. 2020 ; 26( 5): 885-900.[citado 2024 nov. 01 ] Available from: http://math-mprf.org/journal/articles/id1599/
    • Vancouver

      Logachov AV, Mogulsky AA, Prokopenko EI, Iambartsev A. Local limits for string of frozen characters [Internet]. Markov Processes And Related Fields. 2020 ; 26( 5): 885-900.[citado 2024 nov. 01 ] Available from: http://math-mprf.org/journal/articles/id1599/
  • Fonte: Proceedings. Nome do evento: International Conference Stochastic and Analytic Methods in Mathematical Physics. Unidade: IME

    Assuntos: PROCESSOS DE MARKOV, GRANDES DESVIOS, BURACOS NEGROS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene e PIROGOV, Sergey e YAMBARTSEV, Anatoli. Large emissions: Hawking-Penrose black hole model. 2020, Anais.. Potsdam: Universität Potsdam, 2020. Disponível em: https://doi.org/10.25932/publishup-45919. Acesso em: 01 nov. 2024.
    • APA

      Pechersky, E., Pirogov, S., & Yambartsev, A. (2020). Large emissions: Hawking-Penrose black hole model. In Proceedings. Potsdam: Universität Potsdam. doi:10.25932/publishup-45919
    • NLM

      Pechersky E, Pirogov S, Yambartsev A. Large emissions: Hawking-Penrose black hole model [Internet]. Proceedings. 2020 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.25932/publishup-45919
    • Vancouver

      Pechersky E, Pirogov S, Yambartsev A. Large emissions: Hawking-Penrose black hole model [Internet]. Proceedings. 2020 ;[citado 2024 nov. 01 ] Available from: https://doi.org/10.25932/publishup-45919
  • Fonte: Moscow Mathematical Journal. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene et al. Large emission regime in mean field luminescence. Moscow Mathematical Journal, v. 19, n. 1, p. 107-120, 2019Tradução . . Disponível em: https://doi.org/10.17323/1609-4514-2019-19-1-107-120. Acesso em: 01 nov. 2024.
    • APA

      Pechersky, E., Pirogov, S., Schultz, G. M., Vladimirov, A., & Iambartsev, A. (2019). Large emission regime in mean field luminescence. Moscow Mathematical Journal, 19( 1), 107-120. doi:10.17323/1609-4514-2019-19-1-107-120
    • NLM

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 01 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
    • Vancouver

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 01 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
  • Fonte: Theoretical and Mathematical Physics. Unidade: IME

    Assuntos: PROCESSOS DE MARKOV, GRANDES DESVIOS, MECÂNICA QUÂNTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene A et al. Large fluctuations in two-level systems with stimulated emission. Theoretical and Mathematical Physics, v. 198, n. 1, p. 118-128, 2019Tradução . . Disponível em: https://doi.org/10.1134/s0040577919010082. Acesso em: 01 nov. 2024.
    • APA

      Pechersky, E. A., Pirogov, S., Schutz, G. M., Vladimirov, A., & Iambartsev, A. (2019). Large fluctuations in two-level systems with stimulated emission. Theoretical and Mathematical Physics, 198( 1), 118-128. doi:10.1134/s0040577919010082
    • NLM

      Pechersky EA, Pirogov S, Schutz GM, Vladimirov A, Iambartsev A. Large fluctuations in two-level systems with stimulated emission [Internet]. Theoretical and Mathematical Physics. 2019 ; 198( 1): 118-128.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1134/s0040577919010082
    • Vancouver

      Pechersky EA, Pirogov S, Schutz GM, Vladimirov A, Iambartsev A. Large fluctuations in two-level systems with stimulated emission [Internet]. Theoretical and Mathematical Physics. 2019 ; 198( 1): 118-128.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1134/s0040577919010082
  • Fonte: Statistics & Probability Letters. Unidade: IME

    Assuntos: GRANDES DESVIOS, TEOREMAS LIMITES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. e LOGACHOVA, O. e YAMBARTSEV, Anatoli. Large deviations in a population dynamics with catastrophes. Statistics & Probability Letters, v. 149, p. 29-37, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.spl.2019.01.029. Acesso em: 01 nov. 2024.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2019). Large deviations in a population dynamics with catastrophes. Statistics & Probability Letters, 149, 29-37. doi:10.1016/j.spl.2019.01.029
    • NLM

      Logachov A, Logachova O, Yambartsev A. Large deviations in a population dynamics with catastrophes [Internet]. Statistics & Probability Letters. 2019 ; 149 29-37.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.spl.2019.01.029
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. Large deviations in a population dynamics with catastrophes [Internet]. Statistics & Probability Letters. 2019 ; 149 29-37.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.spl.2019.01.029
  • Fonte: Problems of Information Transmission. Unidade: IME

    Assuntos: ESTATÍSTICA APLICADA, BIOESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VVEDENSKAYA, N. D. et al. A Local large deviation principle for inhomogeneous birth–death processes. Problems of Information Transmission, v. 54, n. 3, p. 263-280, 2018Tradução . . Disponível em: https://doi.org/10.1134/s0032946018030067. Acesso em: 01 nov. 2024.
    • APA

      Vvedenskaya, N. D., Logachov, A. V., Suhov, Y. M., & Iambartsev, A. (2018). A Local large deviation principle for inhomogeneous birth–death processes. Problems of Information Transmission, 54( 3), 263-280. doi:10.1134/s0032946018030067
    • NLM

      Vvedenskaya ND, Logachov AV, Suhov YM, Iambartsev A. A Local large deviation principle for inhomogeneous birth–death processes [Internet]. Problems of Information Transmission. 2018 ; 54( 3): 263-280.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1134/s0032946018030067
    • Vancouver

      Vvedenskaya ND, Logachov AV, Suhov YM, Iambartsev A. A Local large deviation principle for inhomogeneous birth–death processes [Internet]. Problems of Information Transmission. 2018 ; 54( 3): 263-280.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1134/s0032946018030067

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024