Filtros : "2011" Limpar

Filtros



Refine with date range


  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Assunto: TEORIA DOS NÚMEROS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PACELLI BESSA, G e PICCIONE, Paolo. On the Omori-Yau maximum principle in Riemannian submersions. São Paulo Journal of Mathematical Sciences, v. 5, n. 1, p. 101-110, 2011Tradução . . Disponível em: https://doi.org/10.11606/issn.2316-9028.v5i1p105-114. Acesso em: 21 jan. 2026.
    • APA

      Pacelli Bessa, G., & Piccione, P. (2011). On the Omori-Yau maximum principle in Riemannian submersions. São Paulo Journal of Mathematical Sciences, 5( 1), 101-110. doi:10.11606/issn.2316-9028.v5i1p105-114
    • NLM

      Pacelli Bessa G, Piccione P. On the Omori-Yau maximum principle in Riemannian submersions [Internet]. São Paulo Journal of Mathematical Sciences. 2011 ; 5( 1): 101-110.[citado 2026 jan. 21 ] Available from: https://doi.org/10.11606/issn.2316-9028.v5i1p105-114
    • Vancouver

      Pacelli Bessa G, Piccione P. On the Omori-Yau maximum principle in Riemannian submersions [Internet]. São Paulo Journal of Mathematical Sciences. 2011 ; 5( 1): 101-110.[citado 2026 jan. 21 ] Available from: https://doi.org/10.11606/issn.2316-9028.v5i1p105-114
  • Source: Results in Mathematics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALIAS, Luis J et al. Curvature estimates for submanifolds in warped products. Results in Mathematics, v. 60, n. 1-4, p. 265-286, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00025-011-0154-5. Acesso em: 21 jan. 2026.
    • APA

      Alias, L. J., Bessa, G. P., Montenegro, J. F. B., & Piccione, P. (2011). Curvature estimates for submanifolds in warped products. Results in Mathematics, 60( 1-4), 265-286. doi:10.1007/s00025-011-0154-5
    • NLM

      Alias LJ, Bessa GP, Montenegro JFB, Piccione P. Curvature estimates for submanifolds in warped products [Internet]. Results in Mathematics. 2011 ; 60( 1-4): 265-286.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00025-011-0154-5
    • Vancouver

      Alias LJ, Bessa GP, Montenegro JFB, Piccione P. Curvature estimates for submanifolds in warped products [Internet]. Results in Mathematics. 2011 ; 60( 1-4): 265-286.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00025-011-0154-5
  • Source: Archive for Rational Mechanics and Analysis. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, v. 200, n. 2, p. 691-724, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00205-010-0371-1. Acesso em: 21 jan. 2026.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2011). Multiple brake orbits and homoclinics in Riemannian manifolds. Archive for Rational Mechanics and Analysis, 200( 2), 691-724. doi:10.1007/s00205-010-0371-1
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00205-010-0371-1
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits and homoclinics in Riemannian manifolds [Internet]. Archive for Rational Mechanics and Analysis. 2011 ; 200( 2): 691-724.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00205-010-0371-1
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FLORES, Jose Luis e JAVALOYES, Miguel Angel e PICCIONE, Paolo. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, v. 267, n. 1-2, p. 221-233, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00209-009-0617-5. Acesso em: 21 jan. 2026.
    • APA

      Flores, J. L., Javaloyes, M. A., & Piccione, P. (2011). Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, 267( 1-2), 221-233. doi:10.1007/s00209-009-0617-5
    • NLM

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00209-009-0617-5
    • Vancouver

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00209-009-0617-5
  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALIAS, Luis J. e PICCIONE, Paolo. On the manifold structure of the set of unparameterized embeddings with low regularity. Bulletin of the Brazilian Mathematical Society, v. 42, n. 2, p. 171-183, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00574-011-0009-4. Acesso em: 21 jan. 2026.
    • APA

      Alias, L. J., & Piccione, P. (2011). On the manifold structure of the set of unparameterized embeddings with low regularity. Bulletin of the Brazilian Mathematical Society, 42( 2), 171-183. doi:10.1007/s00574-011-0009-4
    • NLM

      Alias LJ, Piccione P. On the manifold structure of the set of unparameterized embeddings with low regularity [Internet]. Bulletin of the Brazilian Mathematical Society. 2011 ; 42( 2): 171-183.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00574-011-0009-4
    • Vancouver

      Alias LJ, Piccione P. On the manifold structure of the set of unparameterized embeddings with low regularity [Internet]. Bulletin of the Brazilian Mathematical Society. 2011 ; 42( 2): 171-183.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00574-011-0009-4
  • Source: Journal of the London Mathematical Society. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIOTTI, Leonardo e JAVALOYES, Miguel Angel e PICCIONE, Paolo. On the semi-Riemannian bumpy metric theorem. Journal of the London Mathematical Society, v. 84, n. 1, p. 1-18, 2011Tradução . . Disponível em: https://doi.org/10.1112/jlms/jdq099. Acesso em: 21 jan. 2026.
    • APA

      Biliotti, L., Javaloyes, M. A., & Piccione, P. (2011). On the semi-Riemannian bumpy metric theorem. Journal of the London Mathematical Society, 84( 1), 1-18. doi:10.1112/jlms/jdq099
    • NLM

      Biliotti L, Javaloyes MA, Piccione P. On the semi-Riemannian bumpy metric theorem [Internet]. Journal of the London Mathematical Society. 2011 ; 84( 1): 1-18.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1112/jlms/jdq099
    • Vancouver

      Biliotti L, Javaloyes MA, Piccione P. On the semi-Riemannian bumpy metric theorem [Internet]. Journal of the London Mathematical Society. 2011 ; 84( 1): 1-18.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1112/jlms/jdq099
  • Source: Results in Mathematics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LODOVICI, Sinuê Dayan Barbero e PICCIONE, Paolo. Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds. Results in Mathematics, v. 60, n. 1-4, p. 43-473, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00025-011-0184-z. Acesso em: 21 jan. 2026.
    • APA

      Lodovici, S. D. B., & Piccione, P. (2011). Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds. Results in Mathematics, 60( 1-4), 43-473. doi:10.1007/s00025-011-0184-z
    • NLM

      Lodovici SDB, Piccione P. Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds [Internet]. Results in Mathematics. 2011 ; 60( 1-4): 43-473.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00025-011-0184-z
    • Vancouver

      Lodovici SDB, Piccione P. Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds [Internet]. Results in Mathematics. 2011 ; 60( 1-4): 43-473.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00025-011-0184-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026