Curvature estimates for submanifolds in warped products (2011)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1007/s00025-011-0154-5
- Assunto: GEOMETRIA DIFERENCIAL
- Keywords: Warped product manifolds; Omori–Yau Maximum Principle; Weak Omori-Yau Maximum Principle; cylindrically bounded submanifolds; sectional curvature; scalar curvature; mean curvature
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Results in Mathematics
- ISSN: 1422-6383
- Volume/Número/Paginação/Ano: v. 60, n. 1-4, p. 265-286, 2011
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ALIAS, Luis J et al. Curvature estimates for submanifolds in warped products. Results in Mathematics, v. 60, n. 1-4, p. 265-286, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00025-011-0154-5. Acesso em: 21 jan. 2026. -
APA
Alias, L. J., Bessa, G. P., Montenegro, J. F. B., & Piccione, P. (2011). Curvature estimates for submanifolds in warped products. Results in Mathematics, 60( 1-4), 265-286. doi:10.1007/s00025-011-0154-5 -
NLM
Alias LJ, Bessa GP, Montenegro JFB, Piccione P. Curvature estimates for submanifolds in warped products [Internet]. Results in Mathematics. 2011 ; 60( 1-4): 265-286.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00025-011-0154-5 -
Vancouver
Alias LJ, Bessa GP, Montenegro JFB, Piccione P. Curvature estimates for submanifolds in warped products [Internet]. Results in Mathematics. 2011 ; 60( 1-4): 265-286.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s00025-011-0154-5 - A Morse theory for massive particles and photons in general relativity
- On the normal exponential map in singular conformal metrics
- Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles
- Periodic trajectories of dynamical systems having a one-parameter group of symmetries
- Stability and bifurcation for surfaces with constant mean curvature
- Maslov index in semi-Riemannian submersions
- Spectral flow and iteration of closed semi-Riemannian geodesics
- On the Omori-Yau maximum principle in Riemannian submersions
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
Informações sobre o DOI: 10.1007/s00025-011-0154-5 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3068979.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
