Improving current forecast by leveraging measured data and numerical models via LiESNs (2025)
- Authors:
- USP affiliated authors: CORREIA, ARTUR JORDÃO LIMA - EP ; MATHIAS, MARLON SPROESSER - EP ; DOTTORI, MARCELO - IO ; COSTA, ANNA HELENA REALI - EP ; GOMI, EDSON SATOSHI - EP ; COZMAN, FABIO GAGLIARDI - EP ; TANNURI, EDUARDO AOUN - EP ; MORENO, FELIPE MARINO - EP ; BARROS, MARCEL RODRIGUES DE - EP ; Mathias, Marlon Sproesser - EP
- Unidades: EP; IO
- DOI: 10.1016/j.envsoft.2025.106556
- Subjects: APRENDIZADO COMPUTACIONAL; REDES NEURAIS; PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS)
- Keywords: REDE ECHO STATE
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Environmental Modelling and Software
- ISSN: 1364-8152
- Volume/Número/Paginação/Ano: v. 192, p. 1-13, article nº 106556, 2025
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MORENO, Felipe Marino et al. Improving current forecast by leveraging measured data and numerical models via LiESNs. Environmental Modelling and Software, v. 192, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.envsoft.2025.106556. Acesso em: 31 dez. 2025. -
APA
Moreno, F. M., Barros, M. R. de, Correia, A. J. L., Mathias, M. S., Dottori, M., Reali Costa, A. H., et al. (2025). Improving current forecast by leveraging measured data and numerical models via LiESNs. Environmental Modelling and Software, 192, 1-13. doi:10.1016/j.envsoft.2025.106556 -
NLM
Moreno FM, Barros MR de, Correia AJL, Mathias MS, Dottori M, Reali Costa AH, Gomi ES, Cozman FG, Tannuri EA. Improving current forecast by leveraging measured data and numerical models via LiESNs [Internet]. Environmental Modelling and Software. 2025 ; 192 1-13.[citado 2025 dez. 31 ] Available from: https://doi.org/10.1016/j.envsoft.2025.106556 -
Vancouver
Moreno FM, Barros MR de, Correia AJL, Mathias MS, Dottori M, Reali Costa AH, Gomi ES, Cozman FG, Tannuri EA. Improving current forecast by leveraging measured data and numerical models via LiESNs [Internet]. Environmental Modelling and Software. 2025 ; 192 1-13.[citado 2025 dez. 31 ] Available from: https://doi.org/10.1016/j.envsoft.2025.106556 - A physics-informed neural network to model port channels
- Early detection of extreme storm tide events using multimodal data processing
- Improving LLMs’ reasoning and planning with finite-state machines
- Embracing data irregularities in multivariate time series
- A physics-informed neural operator for the simulation of surface waves
- Embracing data irregularities in multivariate time series with recurrent and graph neural networks
- Augmenting a physics-informed neural network for the 2D burgers equation by addition of solution data points
- Automatic clustering of metocean conditions on the brazilian coast
- Embracing data irregularities in multivariate time series
- Neural network meta-models for FPSO motion prediction from environmental data with different platform loads
Informações sobre o DOI: 10.1016/j.envsoft.2025.106556 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| Improving_current_forecas... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
