A first-order regularized algorithm with complexity properties for the unconstrained and the convexly constrained low order-value optimization problem (2025)
- Authors:
- USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME ; ALVAREZ, GUSTAVO DAVID QUINTERO - IME
- Unidade: IME
- DOI: 10.1007/s10898-025-01521-5
- Subjects: PROGRAMAÇÃO NÃO LINEAR; ANÁLISE NUMÉRICA; MÉTODOS NUMÉRICOS
- Keywords: Low order-value optimization; Regularized models; Convex constraints; Projected gradient; Complexity; Algorithms
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Global Optimization
- ISSN: 0925-5001
- Volume/Número/Paginação/Ano: v. 93, p. 241-261, 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ÁLVAREZ, Gustavo David Quintero e BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A first-order regularized algorithm with complexity properties for the unconstrained and the convexly constrained low order-value optimization problem. Journal of Global Optimization, v. 93, p. 241-261, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10898-025-01521-5. Acesso em: 17 fev. 2026. -
APA
Álvarez, G. D. Q., Birgin, E. J. G., & Martínez, J. M. (2025). A first-order regularized algorithm with complexity properties for the unconstrained and the convexly constrained low order-value optimization problem. Journal of Global Optimization, 93, 241-261. doi:10.1007/s10898-025-01521-5 -
NLM
Álvarez GDQ, Birgin EJG, Martínez JM. A first-order regularized algorithm with complexity properties for the unconstrained and the convexly constrained low order-value optimization problem [Internet]. Journal of Global Optimization. 2025 ; 93 241-261.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s10898-025-01521-5 -
Vancouver
Álvarez GDQ, Birgin EJG, Martínez JM. A first-order regularized algorithm with complexity properties for the unconstrained and the convexly constrained low order-value optimization problem [Internet]. Journal of Global Optimization. 2025 ; 93 241-261.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s10898-025-01521-5 - A first-order regularized approach to the order-value optimization problem
- First-order regularized algorithms with complexity properties for order-valued and low-order-valued optimization problems
- An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
Informações sobre o DOI: 10.1007/s10898-025-01521-5 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3258509.pdf | |||
| 3258509_va_-_A_first-orde... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
