A first-order regularized approach to the order-value optimization problem (2025)
- Authors:
- USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME ; ALVAREZ, GUSTAVO DAVID QUINTERO - IME
- Unidade: IME
- DOI: 10.1080/10556788.2025.2453111
- Subjects: PROGRAMAÇÃO NÃO LINEAR; ANÁLISE NUMÉRICA; CÁLCULO DE VARIAÇÕES; CONTROLE ÓTIMO; PESQUISA OPERACIONAL; ANÁLISE DE ALGORITMOS
- Keywords: Order-value optimization; regularized models; complexity; algorithms; applications
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Optimization Methods and Software
- ISSN: 1055-6788
- Volume/Número/Paginação/Ano: v. 40, n. 3, p. 650-674, 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ÁLVAREZ, Gustavo David Quintero e BIRGIN, Ernesto Julian Goldberg. A first-order regularized approach to the order-value optimization problem. Optimization Methods and Software, v. 40, n. 3, p. 650-674, 2025Tradução . . Disponível em: https://doi.org/10.1080/10556788.2025.2453111. Acesso em: 09 fev. 2026. -
APA
Álvarez, G. D. Q., & Birgin, E. J. G. (2025). A first-order regularized approach to the order-value optimization problem. Optimization Methods and Software, 40( 3), 650-674. doi:10.1080/10556788.2025.2453111 -
NLM
Álvarez GDQ, Birgin EJG. A first-order regularized approach to the order-value optimization problem [Internet]. Optimization Methods and Software. 2025 ; 40( 3): 650-674.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1080/10556788.2025.2453111 -
Vancouver
Álvarez GDQ, Birgin EJG. A first-order regularized approach to the order-value optimization problem [Internet]. Optimization Methods and Software. 2025 ; 40( 3): 650-674.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1080/10556788.2025.2453111 - A first-order regularized algorithm with complexity properties for the unconstrained and the convexly constrained low order-value optimization problem
- First-order regularized algorithms with complexity properties for order-valued and low-order-valued optimization problems
- An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
Informações sobre o DOI: 10.1080/10556788.2025.2453111 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3240091.pdf | |||
| 3240091_-_A_first-order_r... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
