Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph (2024)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.33048/semi.2024.21.060
- Subjects: GRAFOS ALEATÓRIOS; TEORIA DOS GRAFOS; PROCESSOS EM MEIOS ALEATÓRIOS
- Keywords: Teorema do limite central; Gráfico Erdos-Renyi; Central limit theorem; Erdos-Renyi graph; Large deviations principle
- Language: Inglês
- Imprenta:
- Publisher place: Novosibirsk
- Date published: 2024
- Source:
- Título: Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya
- ISSN: 1813-3304
- Volume/Número/Paginação/Ano: v. 1, n. 2, p.914-926, 2024
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
-
ABNT
LOGACHOV, Artem e MOGULSKII, Anatolii e YAMBARTSEV, Anatoli. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya, v. 1, n. 2, p. 914-926, 2024Tradução . . Disponível em: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002. Acesso em: 11 jan. 2026. -
APA
Logachov, A., Mogulskii, A., & Yambartsev, A. (2024). Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya, 1( 2), 914-926. doi:10.33048/semi.2024.21.060 -
NLM
Logachov A, Mogulskii A, Yambartsev A. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph [Internet]. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. 2024 ; 1( 2): 914-926.[citado 2026 jan. 11 ] Available from: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002 -
Vancouver
Logachov A, Mogulskii A, Yambartsev A. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph [Internet]. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. 2024 ; 1( 2): 914-926.[citado 2026 jan. 11 ] Available from: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002 - Random walks in a queueing network environment
- A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins
- Growth of uniform infinite causal triangulations
- Stochastic ising model with plastic interactions
- Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria
- New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer
- A Mermin-Wagner theorem for Gibbs states on Lorentzian triangulations
- Phase transition for the Ising model on the critical Lorentzian triangulation
- Percolation properties of the non-ideal gas
- Selection of control genes for quantitative RT-PCR based on microarray data
Informações sobre o DOI: 10.33048/semi.2024.21.060 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
