Sobolev solvability of elliptic homogenous linear equations on Borel measures (2023)
- Authors:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- Subjects: MATEMÁTICA; OPERADORES; EQUAÇÕES LINEARES
- Language: Inglês
- Imprenta:
- Publisher place: Florianópolis
- Date published: 2023
- Source:
- Título: Resumo
- Conference titles: Symposium on Evolution Equations
-
ABNT
PICON, Tiago Henrique e BILIATTO, Victor. Sobolev solvability of elliptic homogenous linear equations on Borel measures. 2023, Anais.. Florianópolis: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2023. Disponível em: https://mbortolan.wixsite.com/see2023. Acesso em: 04 ago. 2025. -
APA
Picon, T. H., & Biliatto, V. (2023). Sobolev solvability of elliptic homogenous linear equations on Borel measures. In Resumo. Florianópolis: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Recuperado de https://mbortolan.wixsite.com/see2023 -
NLM
Picon TH, Biliatto V. Sobolev solvability of elliptic homogenous linear equations on Borel measures [Internet]. Resumo. 2023 ;[citado 2025 ago. 04 ] Available from: https://mbortolan.wixsite.com/see2023 -
Vancouver
Picon TH, Biliatto V. Sobolev solvability of elliptic homogenous linear equations on Borel measures [Internet]. Resumo. 2023 ;[citado 2025 ago. 04 ] Available from: https://mbortolan.wixsite.com/see2023 - Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces
- Div–curl type estimates for elliptic systems of complex vector fields
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Stein-Weiss inequality in L 1 norm for vector fields
- Stein-Weiss type inequality in L1 norm for vector fields and applications
- A note on lebesgue solvability of elliptic homogeneous linear equations with measure data
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- On local continuous solvability of equations associated to elliptic and canceling linear differential operators
- Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
003193706.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas