Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions (2024)
- Authors:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1515/forum-2023-0438
- Subjects: MATEMÁTICA; ESPAÇOS TOPOLÓGICOS; OPERADORES DIFERENCIAIS
- Keywords: Divergence-measure vector fields; Removable sets; Frostman‘s Lemma; Canceling operators
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Forum Mathematicum
- ISSN: 0933-7741
- Volume/Número/Paginação/Ano: on-line, [6] p, 2024
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BILIATTO, Victor e MOONENS, Laurent e PICON, Tiago Henrique. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions. Forum Mathematicum, 2024Tradução . . Disponível em: https://doi.org/10.1515/forum-2023-0438. Acesso em: 04 ago. 2025. -
APA
Biliatto, V., Moonens, L., & Picon, T. H. (2024). Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions. Forum Mathematicum. doi:10.1515/forum-2023-0438 -
NLM
Biliatto V, Moonens L, Picon TH. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions [Internet]. Forum Mathematicum. 2024 ;[citado 2025 ago. 04 ] Available from: https://doi.org/10.1515/forum-2023-0438 -
Vancouver
Biliatto V, Moonens L, Picon TH. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions [Internet]. Forum Mathematicum. 2024 ;[citado 2025 ago. 04 ] Available from: https://doi.org/10.1515/forum-2023-0438 - Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces
- Div–curl type estimates for elliptic systems of complex vector fields
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Stein-Weiss inequality in L 1 norm for vector fields
- Sobolev solvability of elliptic homogenous linear equations on Borel measures
- Stein-Weiss type inequality in L1 norm for vector fields and applications
- A note on lebesgue solvability of elliptic homogeneous linear equations with measure data
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- On local continuous solvability of equations associated to elliptic and canceling linear differential operators
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
Informações sobre o DOI: 10.1515/forum-2023-0438 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
003242824.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas