On local continuous solvability of equations associated to elliptic and canceling linear differential operators (2021)
- Authors:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1016/j.matpur.2020.12.001
- Subjects: MATEMÁTICA; OPERADORES DIFERENCIAIS PARCIAIS; ESPAÇOS VETORIAIS
- Keywords: Continuous solvability of PDEs; Elliptic and canceling operators; Applications of the closed range theorem
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Issy les Moulineaux Cedex
- Date published: 2021
- Source:
- Título: Journal de Mathématiques Pures et Appliquées
- ISSN: 0021-7824
- Volume/Número/Paginação/Ano: v. 149, p. 47-72, 2021
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
MOONENS, Laurent e PICON, Tiago Henrique. On local continuous solvability of equations associated to elliptic and canceling linear differential operators. Journal de Mathématiques Pures et Appliquées, v. 149, p. 47-72, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.matpur.2020.12.001. Acesso em: 04 ago. 2025. -
APA
Moonens, L., & Picon, T. H. (2021). On local continuous solvability of equations associated to elliptic and canceling linear differential operators. Journal de Mathématiques Pures et Appliquées, 149, 47-72. doi:10.1016/j.matpur.2020.12.001 -
NLM
Moonens L, Picon TH. On local continuous solvability of equations associated to elliptic and canceling linear differential operators [Internet]. Journal de Mathématiques Pures et Appliquées. 2021 ; 149 47-72.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1016/j.matpur.2020.12.001 -
Vancouver
Moonens L, Picon TH. On local continuous solvability of equations associated to elliptic and canceling linear differential operators [Internet]. Journal de Mathématiques Pures et Appliquées. 2021 ; 149 47-72.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1016/j.matpur.2020.12.001 - Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces
- Div–curl type estimates for elliptic systems of complex vector fields
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Stein-Weiss inequality in L 1 norm for vector fields
- Sobolev solvability of elliptic homogenous linear equations on Borel measures
- Stein-Weiss type inequality in L1 norm for vector fields and applications
- A note on lebesgue solvability of elliptic homogeneous linear equations with measure data
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
Informações sobre o DOI: 10.1016/j.matpur.2020.12.001 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas