Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces (2017)
- Authors:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- Subjects: OPERADORES PSEUDODIFERENCIAIS; MATEMÁTICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Livro de Resumos
- Conference titles: Workshop de Verão em Matemática
-
ABNT
PICON, Tiago Henrique e HOEPFNER, Gustavo e KAPP, Rafael A. Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces. 2017, Anais.. Brasília: UnB, 2017. . Acesso em: 03 jan. 2026. -
APA
Picon, T. H., Hoepfner, G., & Kapp, R. A. (2017). Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces. In Livro de Resumos. Brasília: UnB. -
NLM
Picon TH, Hoepfner G, Kapp RA. Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces. Livro de Resumos. 2017 ;[citado 2026 jan. 03 ] -
Vancouver
Picon TH, Hoepfner G, Kapp RA. Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces. Livro de Resumos. 2017 ;[citado 2026 jan. 03 ] - On local continuous solvability of equations associated to elliptic and canceling linear differential operators
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- Regularity of maximal functions on Hardy-Sobolev spaces
- The boundedness of inhomogeneous Calderón–Zygmund operators on local Hardy spaces and approximate moment conditions
- A note on continuity of strongly singular Calderón-Zygmund operators in hardy-morrey spaces
- Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions
- Div–curl type estimates for elliptic systems of complex vector fields
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Stein-Weiss inequality in L 1 norm for vector fields
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
