Stein-Weiss inequality in L¹ norm for vector fields (2023)
- Authors:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1090/proc/16241
- Subjects: MATEMÁTICA; VETORES
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2023
- Source:
- Título: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 151, n. 4, p. 1663-1679, 2023
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
DE NÁPOLI, Pablo e PICON, Tiago. Stein-Weiss inequality in L¹ norm for vector fields. Proceedings of the American Mathematical Society, v. 151, n. 4, p. 1663-1679, 2023Tradução . . Disponível em: https://doi.org/10.1090/proc/16241. Acesso em: 10 nov. 2024. -
APA
De Nápoli, P., & Picon, T. (2023). Stein-Weiss inequality in L¹ norm for vector fields. Proceedings of the American Mathematical Society, 151( 4), 1663-1679. doi:10.1090/proc/16241 -
NLM
De Nápoli P, Picon T. Stein-Weiss inequality in L¹ norm for vector fields [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151( 4): 1663-1679.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1090/proc/16241 -
Vancouver
De Nápoli P, Picon T. Stein-Weiss inequality in L¹ norm for vector fields [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151( 4): 1663-1679.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1090/proc/16241 - Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces
- Div–curl type estimates for elliptic systems of complex vector fields
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Stein-Weiss inequality in L 1 norm for vector fields
- Sobolev solvability of elliptic homogenous linear equations on Borel measures
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- On local continuous solvability of equations associated to elliptic and canceling linear differential operators
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- Regularity of maximal functions on Hardy-Sobolev spaces
- The boundedness of inhomogeneous Calderón–Zygmund operators on local Hardy spaces and approximate moment conditions
Informações sobre o DOI: 10.1090/proc/16241 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
003185614 - 17 Stein-Weis... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas