Mathematical modeling of estrogen degradation in enzymatic membrane reactor (2020)
- Authors:
- USP affiliated authors: GOMES, FABRÍCIO MACIEL - EEL ; PEREIRA, FÉLIX MONTEIRO - EEL ; CARVALHO, CAMILA LIMA DE SOUZA - EEL
- Unidade: EEL
- DOI: 10.1089/ind.2020.29200.csc
- Assunto: ENZIMAS
- Keywords: Modelo Matemático; mathematical modeling; endocrine diruptor chemical; enzymatic membrane reactor
- Language: Inglês
- Abstract: Estrogens are endocrine-disrupting chemicals (EDCs) that enter waterbodies via wastewater. Because of this, some countries are creating legislation aimed at developing processes to degrade EDCs in wastewater-treatment plants. Estrone and estradiol are the estrogens found in high concentrations in waterbodies. Some processes in literature suggest using the enzyme laccase to degrade EDCs. This work mathematically models EDCs degradation by laccase in an enzymatic membrane reactor (EMR). The models were built from the mass balances of EDCs and active enzymes in EMR, including Michaelis Menten kinetics and a parameter coupling the enzyme activation, deactivation, and loss by the outflow. Experimental data from literature were used in the models' regressions. The experiments considered three experimental conditions to evaluate two process parameters: EMR residence time and O2 pulse frequency. The models' assessment considered the following statistical tests: Student's t to evaluate the parameters' significance; Akaike Information Criteria to select the best models; and R2 to evaluate the models' fit. Results show the best assessed kinetic models were able to represent degradation in an EMR, and the best operation conditions were a residence time of 4 h and an O2 pulse frequency of 0.5 h. The methods and mathematical models presented in this manuscript can contribute to wastewater plant design for reducing contamination by EDCs in waterbodies.
- Imprenta:
- Publisher: Mary Ann Liebert INC.
- Publisher place: Uberlândia - MG
- Date published: 2020
- Source:
- Título: Industrial Biotechnology
- ISSN: 1931-8421
- Volume/Número/Paginação/Ano: v. 16, n. 2, p.1, 2020
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CARVALHO, Camila Lima de Souza e GOMES, Fabrício Maciel e PEREIRA, Félix Monteiro. Mathematical modeling of estrogen degradation in enzymatic membrane reactor. Industrial Biotechnology, v. 16, n. 2, p. 1, 2020Tradução . . Disponível em: https://doi.org/10.1089/ind.2020.29200.csc. Acesso em: 02 abr. 2025. -
APA
Carvalho, C. L. de S., Gomes, F. M., & Pereira, F. M. (2020). Mathematical modeling of estrogen degradation in enzymatic membrane reactor. Industrial Biotechnology, 16( 2), 1. doi:10.1089/ind.2020.29200.csc -
NLM
Carvalho CL de S, Gomes FM, Pereira FM. Mathematical modeling of estrogen degradation in enzymatic membrane reactor [Internet]. Industrial Biotechnology. 2020 ; 16( 2): 1.[citado 2025 abr. 02 ] Available from: https://doi.org/10.1089/ind.2020.29200.csc -
Vancouver
Carvalho CL de S, Gomes FM, Pereira FM. Mathematical modeling of estrogen degradation in enzymatic membrane reactor [Internet]. Industrial Biotechnology. 2020 ; 16( 2): 1.[citado 2025 abr. 02 ] Available from: https://doi.org/10.1089/ind.2020.29200.csc - Mathematical modeling of estrogen degradation in enzimatic membrane reactor
- Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions
- Estudo comparativo entre os métodos gradiente reduzido generalizado e algoritmo genético em otimização com múltiplas respostas
- Aplicação do método de Monte Carlo para previsão do índice de Overall Equipment Effectiveness de uma máquina produtora de celulose
- Comparative study between different methods of agglutination in multiple response optimization
- Projeto CEP
- Efeito da Autocorrelação na Criação de Subgrupos Racionais em um Processo de Usinagem de Virabrequins
- Optimisation of Multiple Response Processes Using Different Modeling Techniques
- Comparative Highly Efficient Production of β-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization
- Lean manufacturing in continuous manufacturing systems: a literature review
Informações sobre o DOI: 10.1089/ind.2020.29200.csc (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas