Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions (2019)
- Authors:
- USP affiliated authors: GOMES, FABRÍCIO MACIEL - EEL ; PEREIRA, FÉLIX MONTEIRO - EEL ; SILVA, MESSIAS BORGES - EEL
- Unidade: EEL
- DOI: 10.1016/j.knosys.2019.05.002
- Subjects: ENGENHARIA DE PRODUÇÃO; PROGRAMAÇÃO GENÉTICA
- Keywords: Optimization; Genetic programming; Desirability function; Modeling
- Language: Inglês
- Abstract: Multiple responses optimization (MRO) consists in the search for the best settings in an problem with conflicting responses. MRO is performed following the steps: experimental design; experimental data gathering; mathematical models building; statistical validation of models; agglutination of the models responses in only one function to be optimized; optimization of agglutinated function; experimental validation of the best conditions. This work selected two MRO cases from literature aiming to compare two methods of mathematical models building and two agglutinating functions to assess the best one among the four possible combinations. The methods used in mathematical models building were the ordinary least squares performed in Minitab (v. 17) and genetic programming performed in Eureqa Formulize (v. 1.24.0). The assessment of the best method for building mathematical models was performed using the Akaike Information Criterion. The responses agglutination were performed using the desirability and modified desirability functions. In all MRO cases, the optimization step was performed by generalized reduced gradient method on Microsoft ExcelTM software. The average percentage distance between predicted and experimental results was used to both assess the best agglutination function and verify the effect of the method used in the building of the mathematical models about its fitness to estimate the best condition close to that one obtained on experimental validation step. The obtained results suggest as the better strategy for multiple responses optimization the use, jointly, of genetic programming to mathematical models building and the modified desirability function to responses agglutination.
- Imprenta:
- Source:
- Título: Knowledge-based systems
- ISSN: 0950-7051
- Volume/Número/Paginação/Ano: v.179, p.21-33, 2019
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
GOMES, Fabrício Maciel et al. Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions. Knowledge-based systems, v. 179, p. 21-33, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.knosys.2019.05.002. Acesso em: 29 dez. 2025. -
APA
Gomes, F. M., Pereira, F. M., Silva, A. F. da, & Silva, M. B. (2019). Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions. Knowledge-based systems, 179, 21-33. doi:10.1016/j.knosys.2019.05.002 -
NLM
Gomes FM, Pereira FM, Silva AF da, Silva MB. Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions [Internet]. Knowledge-based systems. 2019 ;179 21-33.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1016/j.knosys.2019.05.002 -
Vancouver
Gomes FM, Pereira FM, Silva AF da, Silva MB. Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions [Internet]. Knowledge-based systems. 2019 ;179 21-33.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1016/j.knosys.2019.05.002 - Comparative study between different methods of agglutination in multiple response optimization
- Estudo comparativo entre métodos de otimização de problemas com múltiplas respostas
- Estudo comparativo entre os métodos gradiente reduzido generalizado e algoritmo genético em otimização com múltiplas respostas
- Determinação do fator de efetividade para enzimas imobilizadas usando métodos de regressão simbólica via programação genética
- Técnicas de design of Experiments aplicadas à parametrização do processo de Impressão 3D e Prototipagem Rápida de itens automotivos
- Application of Principal Component Analysis and Response Surface Methodology in the Process of Steel Wire Tempering
- Application of Principal Component Analysis and Response Surface Methodology in the Process of Steel Wire Tempering
- A Antecipação do Futuro da Metaheurística nos Contornos da Otimização de Processos: Tendências de Pesquisa Científica
- Lean manufacturing in continuous manufacturing systems: a literature review
- Contributions to the future of metaheuristics in the contours of scientific development
Informações sobre o DOI: 10.1016/j.knosys.2019.05.002 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
