Geometric mean curvature lines on surfaces immersed in R³ (2002)
- Authors:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- Subjects: SUPERFÍCIES; GEOMETRIA EUCLIDIANA; SISTEMAS DINÂMICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6
- ISSN: 0240-2963
- Volume/Número/Paginação/Ano: v. 11, n. 3, p. 377-401, 2002
-
ABNT
GARCIA, Ronaldo e SOTOMAYOR, Jorge. Geometric mean curvature lines on surfaces immersed in R³. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, v. 11, n. 3, p. 377-401, 2002Tradução . . Disponível em: http://www.numdam.org/item/AFST_2002_6_11_3_377_0.pdf. Acesso em: 20 jan. 2026. -
APA
Garcia, R., & Sotomayor, J. (2002). Geometric mean curvature lines on surfaces immersed in R³. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, 11( 3), 377-401. Recuperado de http://www.numdam.org/item/AFST_2002_6_11_3_377_0.pdf -
NLM
Garcia R, Sotomayor J. Geometric mean curvature lines on surfaces immersed in R³ [Internet]. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. 2002 ; 11( 3): 377-401.[citado 2026 jan. 20 ] Available from: http://www.numdam.org/item/AFST_2002_6_11_3_377_0.pdf -
Vancouver
Garcia R, Sotomayor J. Geometric mean curvature lines on surfaces immersed in R³ [Internet]. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6. 2002 ; 11( 3): 377-401.[citado 2026 jan. 20 ] Available from: http://www.numdam.org/item/AFST_2002_6_11_3_377_0.pdf - Lines of curvature and an integral form of Mainardi-Codazzi equations
- Harmonic mean curvature lines on surfaces immersed in R-3
- Stable piecewise polynomial vector fields
- Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band
- Algebraic solutions for polynomial systems with emphasis in the quadratic case
- Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed
- Bifurcation analysis of a model for biological control
- Umbilic and tangential singularities on configurations of principal curvature lines
- Structurally stable configurations of lines of curvature and umbilic points on surfaces
- On pairs of foliations defined by vector fields in the plane
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3175562.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
