Lines of curvature and an integral form of Mainardi-Codazzi equations (1996)
- Autor:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Publisher place: Rio de Janeiro
- Date published: 1996
- Source:
- Título: Anais da Academia Brasileira de Ciências
- ISSN: 0001-3765
- Volume/Número/Paginação/Ano: v. 68, n. 2, p. 133-137, 1996
-
ABNT
SOTOMAYOR, Jorge. Lines of curvature and an integral form of Mainardi-Codazzi equations. Anais da Academia Brasileira de Ciências, v. 68, n. 2, p. 133-137, 1996Tradução . . Disponível em: https://repositorio.usp.br/directbitstream/d0c04f29-aa30-4984-bc91-50b0c792cb69/3175353.pdf. Acesso em: 21 jan. 2026. -
APA
Sotomayor, J. (1996). Lines of curvature and an integral form of Mainardi-Codazzi equations. Anais da Academia Brasileira de Ciências, 68( 2), 133-137. Recuperado de https://repositorio.usp.br/directbitstream/d0c04f29-aa30-4984-bc91-50b0c792cb69/3175353.pdf -
NLM
Sotomayor J. Lines of curvature and an integral form of Mainardi-Codazzi equations [Internet]. Anais da Academia Brasileira de Ciências. 1996 ; 68( 2): 133-137.[citado 2026 jan. 21 ] Available from: https://repositorio.usp.br/directbitstream/d0c04f29-aa30-4984-bc91-50b0c792cb69/3175353.pdf -
Vancouver
Sotomayor J. Lines of curvature and an integral form of Mainardi-Codazzi equations [Internet]. Anais da Academia Brasileira de Ciências. 1996 ; 68( 2): 133-137.[citado 2026 jan. 21 ] Available from: https://repositorio.usp.br/directbitstream/d0c04f29-aa30-4984-bc91-50b0c792cb69/3175353.pdf - Harmonic mean curvature lines on surfaces immersed in R-3
- Stable piecewise polynomial vector fields
- Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band
- Algebraic solutions for polynomial systems with emphasis in the quadratic case
- Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed
- Bifurcation analysis of a model for biological control
- Umbilic and tangential singularities on configurations of principal curvature lines
- Structurally stable configurations of lines of curvature and umbilic points on surfaces
- On pairs of foliations defined by vector fields in the plane
- Regularization of discontinuous vector fields
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3175353.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
